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Natural Intelligence: the INNS Magazine 
Editorial Board 

Spring and Summer issues are combined as the 3
rd

 issue of Volume 1, and the 4
th

 issue will be 

online at Fall 2012. Then, the second volume is scheduled from January 2013. 

The International Neural Networks Society (INNS) is embarking on a new journey. Not satisfied with its own past 
successes, INNS is constantly looking for new ways to better itself.  The goal is for INNS to be the most prestigious 
professional organization in fields around neural networks and natural intelligence (broadly defined), as it has been 
for years. To keep up with the fast changing world of relevant science and technology, a new magazine that is 
designed to appeal to a broader readership ---the new INNS magazine entitled “Natural Intelligence”---thus is born.   

                        Ron Sun, President of the International Neural Networks Society 

The new INNS magazine aims at bridging different communities, spreading from neuroscientists to information 
engineers, and also from university students to world leading researchers. We define “Natural Intelligence” to include 
both “intelligence existing in nature” and “intelligence based on the state of things in nature”. Therefore, the new 
INNS magazine “Natural Intelligence” plans to cover (a) experiments, (b) computational models, and (c) applications 
of the intelligent functions in our brains. Also, there is an important need for well-written introductory papers 
targeting both young and established researchers from other academic backgrounds. The interdisciplinary nature of 
the many new emerging topics makes these introductory papers essential for research on Natural Intelligence. 
Therefore, the new INNS magazine will mainly publish (a) review papers, (b) white papers, and (c) tutorials. In 
addition, columns, news, and reports on the communities will also be included.     

Soo-Young Lee, Editor-in-Chief, Natural Intelligence: the IN INNS Magazine 
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The understanding of human implicit intention is an interesting topic in cognitive neuroscience, 

and its applications may open a new horizon for the intelligent human-machine interface. The current 

user interface has been developed to understand the explicit representation of human intention such 

as keystrokes, gestures, and speech for appropriate responses. However, there exist many cases in 

which people do not show their intention explicitly. Even the actual intention may be different from 

the explicit one. Therefore, for the next-generation intelligent human-computer interface, it becomes 

very important to understand the ‘implicit’ intention which includes both the ‘intentionally-hidden’ 

intention and ‘un-represented’ intention. Although the former has been investigated in connection 

with the lie detection, the latter is yet to be investigated.  

Recently several researches were reported on the understanding of un-represented intentions. 

However, these have been limited to specific applications such as web surfing and motion-based intentions. More genetic 

definition of implicit intention components is necessary. For example, the edges and the frequency are the basic components 

of vision and auditory perception, respectively. Also, people in general agree with the basic components of human emotions, 

i.e., happiness, sadness, disgusting, etc. We propose to define ‘sympathy for the other’ and ‘non-sympathy for the other’ as 

two basic components of the un-represented implicit intentions. Since the machine needs to understand human intention 

during human-machine interaction, the above definition is quite meaningful. 

The main difficulty of the researches on the implicit intention resides in the non-existence of the ground truth. Therefore, 

for relatively obvious experimental conditions, it may be advantageous to measure multimodal signals such as fMRI, EEG, 

eye-tracking, pupil dilation, GSR, audio and visual signals. A binary classifier may be trained. Then, the trained classifier 

may be used to understand implicit intentions for less obvious conditions in real-world applications.  

Soon machine will understand human intentions, both explicit and implicit, and provide appropriate services for human. 

You do not need show your intention. Also, you cannot hide your intention. However, we will have a ‘good’ big brother to 

serve us. 

Intelligent to machine, freedom to mankind!                                                              ■ 

 
 

Editor’s Column 
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Abstract 

The brain-mind is hyphened because of the tight integration of the 

brain model and the mind model. On one hand, the neuroscience 

literature has provided very rich data about the brain, but such data 

tend to mislead us to think that the brain is composed many special 

purpose modules (e.g., Brodmann areas) where the role of each 

module is largely determined by the genes (e.g., detecting edge 

orientation or a human face). On the other hand, traditional 

artificial neural networks (e.g., Self-Organization Map SOM) 

perform general-purpose signal processing and they learn. 

However, they cannot autonomously learn and develop like a brain 

with its body. Autonomous mental development models how a 

brain-like system, natural and artificial, develops autonomously 

through interactions with the environments. The most fundamental 

difference between traditional machine leaning (using symbolic or 

neural net methods) and autonomous mental development is that a 

developmental program is task non-specific so that it can 

autonomously generate internal representations for a wide variety 

of simple to complex tasks. This paper first discusses why 

autonomous development is necessary based on a concept called 

task muddiness. No traditional methods can perform muddy tasks. 

If the electronic system that you design is meant to perform a 

muddy task, you need to enable it to autonomously develop its 

own mind. Then some basic concepts of autonomous development 

are explained, including the paradigm for autonomous 

development, brain-mental architectures, developmental algorithm, 

a refined classification of types of machine learning, spatial 

complexity and time complexity. Finally, the architecture of a 

brain-like spatiotemporal machine that is capable of autonomous 

development is described. 

1. Biological Development 

A human being starts to develop from the time of 

conception.  At that time, a single cell called a zygote is 

formed. In biology, the term genotype refers to all or part of 

the genetic constitution of an organism. The term phenotype 

refers to all or part of the visible properties of an organism 

that are produced through the interaction between the 

genotype and the environment. In the zygote, all the genetic 

constitution is called genome, which mostly resides in the 

nucleus of a cell.  At the conception of a new human life, a 

biological program called the developmental program starts 

to run. The code of this program is the genome, but this 

program needs the entire cell as well as the cell's 

environment to run properly. 

  The biological developmental program handles two types 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of development, body development and mental development. 

The former is the development of everything in the body 

excluding the brain. The latter is the development of the 

brain (or the Central Nervous System CNS). Through the 

body development, a normal child grows in size and weight, 

along with many other physical changes. Through the 

mental development, a normal child develops a series of 

mental capabilities through interactions with the 

environment. Mental capabilities refer to all known brain 

capabilities, which include, but not limited to, perceptual, 

cognitive, behavioral and motivational capabilities. In this 

paper, the term development refers to mental development 

unless stated otherwise. The biological mental development 

takes place in concurrence with the body development and 

they are closely related. For example, if the eyes are not 

normally developed, the development of the visual 

capabilities is greatly affected. In the development of an 

artificial agent, the body can be designed and fixed (not 

autonomously developed), which helps to reduce the 

complexity of the autonomous mental development. 

The genomic equivalence principle [1] is a very 

important biological concept for us to understand how 

biological development is regulated. This principle states 

that the set of genes in the nucleus of every cell (not only 

that in the zygote!) is functionally complete -- sufficient to 

regulate the development from a single cell into an entire 

adult life. This principle is dramatically demonstrated by 

cloning.  This means that there are no genes that are 

devoted to more than one cell as a whole. Therefore, 

development guided by the genome is cell-centered.  

Carrying a complete set of genes and acting as an 

autonomous machine, every cell must handle its own 

learning while interacting with its external environment 

(e.g., other cells). Inside the brain, every neuron develops 

and learns in place.  It does not need any dedicated learner 

outside the neuron.  For example, it does not need an 

extra-cellular learner to compute the covariance matrix (or 

any other moment matrix or partial derivatives) of its input 

lines and store extra-cellularly. If an artificial 

developmental program develops every artificial neuron 

based on only information that is available to the neuron 

itself (e.g., the  cellular environment such as pre-synaptic 

activities, the developmental program inside the cell, and 

other information that can be biologically stored intra-

cellularly), we call this type of learning in-place learning. 

Tutorial 
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'/,3/).$4 Y+/#,;$ ,0+/");($ )%1 #%0+$-.+%-$ <,/ -"+ #%</)$&

-/;*-;/+ <,/ *,%0+/3#%3 /+$+)/*" ,% #%-+((#3+%*+ #$ ;/3+%-(9

%++1+14 Y;*" #%</)$-/;*-;/+ #$ %+*+$$)/9 <,/ -"+ "+)(-"9

1+0+(,'.+%- ,< $*#+%*+ )%1 -+*"%,(,39 #% -"+ .,1+/% -#.+4

\,- ;%-#( -"+ >#/-" ,< -"+ %+G ?Z[ <#+( .)/O+1 >9

-"+ \Y6 )%1 [?]`? <;%1+1 L,/O$",' ,% [+0+(,'.+%-

)%1 X+)/%#%3 QBBB PABR8 PAAR ")$ -"+ *,%*+'- ,< -"+ -)$O&

%,%$'+*#<# 1+0+(,'.+%-)( '/,3/). *);3"- -"+ )--+%-#,% ,<

.)%9 /+$+)/*"+/$4 ? ")((.)/O 1#<<+/+%*+ >+-G++% -/)1#-#,%)(

)/-#<#*#) #%-+((#3+%*+ )''/,)*"+$ )%1 );-,%,.,;$ .+%-)(

1+0+(,'.+%- PAAR #$ -"+ -)$O $'+*#<#*#- 4 ?(( -"+ +7#$-#%3 )'&

'/,)*"+$ -, )/-#<#*#) #%-+((#3+%*+ #$ -)$O $'+*#<#* +7*+'- -"+

1+0+(,'.+%-)( )''/,)*"4 !)>(+ == (#$-$ -"+ .)I,/ 1#<<+/+%*+$

).,%3 +7#$-#%3 )''/,)*"+$ -, )/-#<#*#) #%-+((#3+%*+4 ?% +%-/9

.)/O+1 )$ 2)0,#1 .,1+(#%35 .+)%$ -")- -"+ /+'/+$+%-)-#,%

#$ +.+/3+%- </,. +7'+/#+%*+4 Y++ L+%3 QBAQ PAQR <,/ )

/+0#+G ,< $9.>,(#* .,1+($ )%1 +.+/3+%- .,1+($ )%1 -"+

*,.')/#$,% -"+/+,<4

!/)1#-#,%)((98 3#0+% ) -)$O -, >+ +7+*;-+1 >9 -"+ .)*"#%+8

#- #$ -"+ ";.)% '/,3/)..+/ G", ;%1+/$-)%1$ -"+ -)$O

)%18 >)$+1 ,% "#$ ;%1+/$-)%1#%38 1+$#3%$ ) -)$O&$'+*#<#

/+'/+$+%-)-#,%4 [+'+%1#%3 ,% 1#<<+/+%- )''/,)*"+$8 1#<<+/+%-

-+*"%#:;+$ )/+ ;$+1 -, '/,1;*+ -"+ .)''#%3 </,. $+%$,/9

#%';-$ -, +<<+*-,/ ,;-';-$4 !"+ -+*"%#:;+$ ;$+1 /)%3+ </,.

1#/+*- '/,3/)..#%3 CO%,G(+13+&>)$+1 )''/,)*"D8 -, (+)/%&

#%3 -"+ ')/).+-+/$ C#% -"+ ')/).+-/#* .,1+(D8 -, 3+%+-#*

$+)/*" C3+%+-#* )''/,)*"D4 ?(-",;3" 3+%+-#* $+)/*" #$ )

',G+/<;( .+-",18 -"+ *"/,.,$,.+ /+'/+$+%-)-#,%$ ;$+1 #%

)/-#<#*#) 3+%+-#* $+)/*" )(3,/#-".$ )/+ -)$O $'+*#<#*

M$#%3 -"+ 1+0+(,'.+%-)( )''/,)*"8 -"+ -)$O$ -")- -"+

/,>,- C,/ ";.)%D +%1$ ;' 1,#%3 )/+ ;%O%,G% 1;/#%3 -"+

'/,3/)..#%3 -#.+ C,/ *,%*+'-#,% -#.+D8 )$ #((;$-/)-+1 #%

6#34 A4 !"+ +*,(,3#*)( *,%1#-#,%$ -")- -"+ /,>,- G#(( ,'+/)-+

;%1+/ .;$- >+ O%,G%8 $, -")- -"+ '/,3/)..+/ *)% 1+$#3% -"+

>,19 ,< -"+ /,>,-8 #%*(;1#%3 $+%$,/$ )%1 +<<+*-,/$8 $;#-+1 <,/

-"+ +*,(,3#*)( *,%1#-#,%$4 !"+ '/,3/)..+/ .)9 3;+$$ $,.+

-9'#*)( -)$O$ -")- -"+ /,>,- G#(( (+)/% -, '+/<,/.4 b,G+0+/8

G,/(1 O%,G(+13+ #$ %,- .,1+(+1 )%1 ,%(9 ) $+- ,< $#.'(+

/+<( 7+$ #$ )((,G+1 <,/ -"+ 1+0+(,'.+%-)( '/,3/).4 [;/#%3

2'/+%)-)(5 1+0+(,'.+%-8 #%-+/%)((9 3+%+/)-+1 $9%-"+-#* 1)-)

*)% >+ ;$+1 -, 1+0+(,' -"+ $9$-+. >+<,/+ >#/-"4 6,/ +7).'(+8

-"+ /+-#%) .)9 3+%+/)-+ $',%-)%+,;$ $#3%)($ -, >+ ;$+1

<,/ -"+ '/+%)-)( 1+0+(,'.+%- ,< -"+ 0#$;)( ')-"G)94 ?- -"+

2>#/-"5 -#.+8 -"+ /,>,-c$ ',G+/ #$ -;/%+1 ,%4 !"+ /,>,-

$-)/-$ -, #%-+/)*- G#-" #-$ +%0#/,%.+%-8 #%*(;1#%3 #-$ -+)*"+/$8

#% /+)( -#.+4 !"+ -)$O$ -"+ /,>,- (+)/%$ )/+ #% -"+ .#%1

,< #-$ -+)*"+/$4 =% ,/1+/ <,/ -"+ ()-+/ (+)/%#%3 -, ;$+ -"+

$O#(($ (+)/%+1 #% +)/(9 (+)/%#%38 ) G+(( 1+$#3%+1 $+:;+%*+ ,<

+1;*)-#,%)( +7'+/#+%*+ #$ )% #.',/-)%- '/)*-#*)( #$$;+4

4. Learning Types

=% -"+ .)*"#%+ (+)/%#%3 (#-+/)-;/+8 -"+/+ ")0+ >++% G#1+(9

)**+'-+1 1+<#%#-#,% ,< (+)/%#%3 -9'+$8 $;*" )$ $;'+/0#$+18

;%$;'+/0#$+18 )%1 /+#%<,/*+.+%- (+)/%#%34 b,G+0+/8 -"+$+

*,%0+%-#,%)( 1+<#%#-#,% )/+ -,, *,)/$+ -, 1+$*/#>+ *,.&

';-)-#,%)( (+)/%#%3 -"/,;3" );-,%,.,;$ 1+0+(,'.+%-4 6,/

+7).'(+8 #- #$ 1#<<#*;( -, #1+%-#<9 )%9 -9'+ ,< (+)/%#%3

-")- #$ *,.'(+-+(9 ;%$;'+/0#$+14 6;/-"+/8 -"+ -/)1#-#,%)(

*()$$#<#*)-#, ,< )%#.)( (+)/%#%3 .,1+($8 $;*" )$ *()$$#*)(

*,%1#-#,%#%3 )%1 #%$-/;.+%-)( *,%1#-#,%#%38 #$ %,- $;<<#*#+%

-, )11/+$$ *,.';-)-#,%)( *,%$#1+/)-#,%$ ,< +0+/9 -#.+ #%&

$-)%- ,< (+)/%#%34 ? 1+<#%#-#, ,< ) /+<#%+ *()$$#<#*)-#, ,<

(+)/%#%3 -9'+$ #$ %+*+$$)/94

L+ ;$+ ) 0)/#)>(+ i -, #%1#*)-+ i%-+/%)( -)$O&$'+*#<# /+'&
/+$+%-)-#,% #.',$+1 >9 ";.)% '/,3/)..+/ C*)((+1 internal-
state imposed i = 1D ,/ %,- C*)((+1 internal-state au-
tonomous i = 0D4

L+ ;$+ e -, 1+%,-+ );-,%,.9 ,< +<<+*-,/4 =< -"+ *,%*+/%+1
+<<+*-,/ #$ 1#/+*-(9 3;#1+1 >9 -"+ ";.)% -+)*"+/ ,/ ,-"+/

-+)*"#%3 .+*")%#$.$ <,/ -"+ 1+$#/+1 )*-#,%8 G+ *)(( -"+

$#-;)-#,% action imposed Ce = 1D4 J-"+/G#$+8 -"+ (+)/%#%3
#$ +<<+*-,/ );-,%,.,;$ Ce = 0D4
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!?WX@ ==

? FJZ`?]=YJ\ J6 ?``]J?Fb@Y !J ?]!=6=F=?X =\!@XX=a@\F@

?''/,)*" Y'+*#+$ ?/*"#-+*-;/+ L,/(1 O%,G(+13+ ?3+%- >+")0#,/$ !)$O $'+*#<#

^%,G(+13+&>)$+1 Z,1+( Z,1+( Z,1+( h+$
X+)/%#%3&>)$+1 Z,1+( `)/).+-/#*)((9 .,1+( Z,1+( h+$
W+")0#,/&>)$+1 Z,1+( ?0,#1 .,1+(#%3 Z,1+( h+$
a+%+-#* a+%+-#* $+)/*" `)/).+-/#*)((9 .,1+( Z,1+( h+$
[+0+(,'.+%-)( `)/).+-/#*)((9 .,1+( ?0,#1 .,1+(#%3 Z#%#.#_+ .,1+(#%3 \,

6#3;/+ A4 =((;$-/)-#,% ,< -"+ ')/)1#3. ,< 1+0+(,'.+%-)( )3+%-$8 #%$'#/+1 >9 ";.)% .+%-)( 1+0+(,'.+%-4 \, -)$O #$ 3#0+% 1;/#%3 -"+
'/,3/)..#%3 C#4+48 *,%*+'-#,%D -#.+8 1;/#%3 G"#*" ) 3+%+/)(&';/',$+ -)$O&%,%$'+*#<# 1+0+(,'.+%-)( '/,3/). #$ (,)1+1 ,%-, -"+ )3+%-4
`/+%)-)( 1+0+(,'.+%- #$ ;$+1 <,/ 1+0+(,'#%3 $,.+ #%#-#)( '/,*+$$#%3 ')-"G)9$ #% -"+ >/)#% ;$#%3 $',%-)%+,;$ C#%-+/%)((9 3+%+/)-+1D $#3%)($
</,. $+%$,/$4 ?<-+/ -"+ >#/-"8 -"+ )3+%- $-)/-$ -, (+)/% )% ,'+% $+/#+$ ,< -)$O$ -"/,;3" #%-+/)*-#,%$ G#-" -"+ '"9$#*)( G,/(14 !"+ -)$O$ -")-
-"+ )3+%- (+)/%$ )/+ 1+-+/.#%+1 )<-+/ -"+ >#/-"4

L+ %++1 -, 1#$-#%3;#$" -"+ *")%%+($ ,< /+G)/1 C+4348 $G++-

)%1 ')#% $+%$,/$D -")- #$ )0)#()>(+ )- -"+ >#/-" -#.+8 )%1 ,-"+/

*")%%+($ ,< /+G)/1 -")- )/+ %,- /+)19 -, >+ ;$+1 )$ /+G)/1

)- -"+ >#/-" -#.+ C+4348 );1#-,/9 #%';- 23,,15 ,/ 2>)15D >;-

#.'(#+$ ) 0)(;+ )<-+/ ) *+/-)#% ).,;%- ,< 1+0+(,'.+%-4 L+

1+<#% C#%>,/%D >#)$+1 $+%$,/$S

=< -"+ .)*"#%+ ")$ ) '/+1+<#%+ '/+<+/+%*+ ')--+/% -, -"+

$#3%)($ </,. ) $+%$,/ )- -"+ >#/-" -#.+8 -"#$ $+%$,/ #$ )%

(inborn) biased sensor4 J-"+/G#$+8 #- #$ )% (inborn) unbiased
sensor4
=% <)*-8 )(( -"+ $+%$,/$ >+*,.+ >#)$+1 3/)1;)((9 -"/,;3"

',$-%)-)( +7'+/#+%*+ N -"+ 1+0+(,'.+%- ,< -"+ 0)(;+ $9$&

-+.4 6,/ +7).'(+8 -"+ #.)3+ ,< ) <( G+/ 1,+$ %,- 3#0+ )

%+G>,/% >)>9 .;*" /+G)/18 >;- -"+ $).+ #.)3+ >+*,.+$

'(+)$)%- -, (,,O )- C"#3" 0)(;+D )<-+/ -"+ >)>9 ")$ 3,G% ;'4

L+ ;$+ -"+ -"#/1 0)/#)>(+ b -, 1+%,-+ G"+-"+/ ) >#)$+1
$+%$,/ #$ ;$+14 =< )%9 >#)$+1 $+%$,/ #$ )*-#0)-+1 C$+%$+1D

1;/#%3 -"+ (+)/%#%38 G+ *)((+1 -"+ $#-;)-#,% reinforcement
Cb = 1D4 J-"+/G#$+8 -"+ (+)/%#%3 #$ *)((+1 communicative
Cb = 0D4

M$#%3 -"+$+ -"/++ O+9 <)*-,/$8 )%9 -9'+ ,< (+)/%#%3 *)% >+

/+'/+$+%-+1 >9 ) T&-;'(+ (i, e, b)8 G"#*" *,%-)#%$ -"/++ *,.&
',%+%-$ i8 e8 )%1 b8 +)*" ,< G"#*" *)% >+ +#-"+/ /+'/+$+%-+1
>9 0 ,/ 14 !";$8 -"+/+ )/+ ) -,-)( ,< g 1#<<+/+%- T&-;'(+$8 /+'&
/+$+%-#%3 ) -,-)( ,< g 1#<<+/+%- (+)/%#%3 -9'+$4 =< G+ *,%$#1+/

ieb )$ -"/++ >#%)/9 >#-$ ,< -"+ -9'+ #%1+7 %;.>+/ ,< (+)/%#%3
-9'+8 G+ ")0+ g -9'+$ ,< (+)/%#%3 1+<#%+ #% !)>(+ ===4 L+

*)% )($, %).+ +)*" -9'+4 6,/ +7).'(+8 !9'+ B #$ $-)-+&

!?WX@ ===

@=ab! !h`@Y J6 W=JXJa=F?X ?\[ ?]!=6=F=?X X@?]\=\a

!9'+ C>#%)/9D =%-+/%)( $-)-+ @<<+*-,/ W#)$+1 $+%$,/

B CBBBD ?;-,%,.,;$ ?;-,%,.,;$ F,..;%#*)-#0+
A CBBAD ?;-,%,.,;$ ?;-,%,.,;$ ]+#%<,/*+.+%-
Q CBABD ?;-,%,.,;$ =.',$+1 F,..;%#*)-#0+
T CBAAD ?;-,%,.,;$ =.',$+1 ]+#%<,/*+.+%-
U CABBD =.',$)>(+ ?;-,%,.,;$ F,..;%#*)-#0+
V CABAD =.',$)>(+ ?;-,%,.,;$ ]+#%<,/*+.+%-
e CAABD =.',$)>(+ =.',$+1 F,..;%#*)-#0+
f CAAAD =.',$)>(+ =.',$+1 ]+#%<,/*+.+%-

);-,%,.,;$8 +<<+*-,/&);-,%,.,;$8 *,..;%#*)-#0+ (+)/%#%34

!9'+ f #$ $-)-+&#.',$)>(+8 +<<+*-,/&#.',$+18 /+#%<,/*+.+%-

(+)/%#%38 >;- #- ")$ %,- >++% #%*(;1+1 #% -"+ -/)1#-#,%)(

1+<#%#-#, ,< +#-"+/ $;'+/0#$+1 (+)/%#%3 ,/ /+#%<,/*+.+%-

(+)/%#%34 b,G+0+/8 -"#$ (+)/%#%3 #$ ;$+<;( G"+% -+)*"#%3 )

',$#-#0+ ,/ %+3)-#0+ (+$$,% -"/,;3" $;'+/0#$#,%4

M$#%3 -"/++ O+9 <+)-;/+$8 $-)-+&#.',$+18 +<<+*-,/&#.',$+1

)%1 /+#%<,/*+.+%-8 +#3"- (+)/%#%3 -9'+$ )/+ 1+<#%+1 !"#$

/+<#%+ 1+<#%#-#, #$ %+*+$$)/9 -, ;%1+/$-)%1#%3 0)/#,;$

.,1+$ ,< 1+0+(,'.+%-)( )%1 %,%1+0+(,'.+%-)( (+)/%#%34

?(( (+)/%#%3 -9'+$ ;$#%3 ) %,%&1+0+(,'.+%-)( (+)/%#%3

.+-",1 *,//+$',%1#%3 -, !9'+$ f -, U4 !"#$ #$ >+*);$+ -"+

-)$O&$'+*#<# /+'/+$+%-)-#,% #$ )- (+)$- ')/-#)((9 ")%1*/)<-+1

)<-+/ -"+ -)$O #$ 3#0+%4 ?;-,%,.,;$ .+%-)( 1+0+(,'.+%-

;$+$ !9'+$ B -, T4
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  5. Brain-Mind Architectures

L+%3 QBBf PATR '/,',$+1 ) Y?Y@ .,1+( -"/,;3" G"#*"

-"+ )3+%- *)% );-,%,.,;$(9 (+)/% -, -"#%O8 G"#(+ -"+ -"#%O&

#%3 >+")0#,/ #$ .)%#<+$-+1 )$ #%-+/%)( )--+%-#,%4 ?--+%-#,% #$

) O+9 -, +.+/3+%- #%-+((#3+%*+4

5.1. Top-down Attention is Hard
F,%$#1+/ ) *)/ #% ) *,.'(+7 ;/>)% $-/++- +%0#/,%.+%-4 ?-&

-+%-#,% )%1 /+*,3%#-#,% #$ ) ')#/ ,< 1;)(&<++1>)*O '/,>(+.$4

L#-",;- )--+%-#,%8 /+*,3%#-#,% *)%%,- 1, G+((i /+*,3%#-#,%

/+:;#/+$ )--+%1+1 )/+)$ C+4348 -"+ *)/ )/+)D <,/ -"+ <;/-"+/

'/,*+$$#%3 C+4348 -, /+*,3%#_+ -"+ *)/D4 L#-",;- /+*,3%#-#,%8

)--+%-#,% *)%%,- 1, G+((i )--+%-#,% /+:;#/+$ /+*,3%#-#,% <,/

3;#1)%*+ ,< -"+ %+7- <#7)-#, C+4348 ) ',$$#>(+ *)/ )/+)D4

1) Bottom-up attention: Y-;1#+$ #% '$9*",(,398 '"9$#&
,(,398 )%1 %+;/,$*#+%*+ '/,0#1+1 :;)(#-)-#0+ .,1+($ <,/

>,--,.&;' )--+%-#,%8 #4+48 )--+%-#,% ;$+$ 1#<<+/+%- '/,'+/-#+$

,< $+%$,/9 #%';-$8 +4348 *,(,/8 $")'+8 )%1 #((;.#%)%*+ -,

+7-/)*- $)(#+%*94 Y+0+/)( .,1+($ ,< >,--,.&;' )--+%-#,% ")0+

>++% ';>(#$"+14 !"+ <#/$ +7'(#*#- *,.';-)-#,%)( .,1+( ,<

>,--,.&;' )--+%-#,% G)$ '/,',$+1 >9 ^,*" k M((.)% #%

AdgV PAUR8 #% G"#*" ) 2$)(#+%*9 .)'5 #$ *,.';-+1 -, +%*,1+

$-#.;(# $)(#+%*9 )- +0+/9 ()*-)-#,% #% -"+ 0#$;)( $*+%+4 Z,/+

/+*+%-(98 =--# k ^,*" +- )(4 Addg PAVR #%-+3/)-+1 *,(,/8

#%-+%$#-98 )%1 ,/#+%-)-#,% )$ >)$#* <+)-;/+$ #% .;(-#'(+ $*)(+$

<,/ )--+%-#,% *,%-/,(4 ?% )*-#0+&0#$#,% $9$-+.8 *)((+1 \?H=Y

C\+;/)( ?*-#0+ H#$#,%D >9 W)O+/ +- )(4 QBBA8 G)$ '/,',$+1

-, *,%1;*- -"+ 0#$;)( )--+%-#,% $+(+*-#,% #% ) 19%).#* 0#$;)(

$*+%+ PAeR4 J;/ Y?Y@ .,1+( -, >+ 1#$*;$$+1 %+7- #%1#*)-+$

-")- $)(#+%*9 #$ %,- %+*+$$)/#(9 #%1+'+%1+%- ,< (+)/%#%3S !"+

-,'&1,G% '/,*+$$ #% -"+ '/+0#,;$ -#.+ #%$-)%- .)9 )<<+*- -"+

*;//+%- >,--,.&;' $)(#+%*94

2) Top-down attention: H,(#-#,%)( $"#<-$ ,< )--+%-#,% )/+
)($, -",;3"- -, >+ '+/<,/.+1 -,'&1,G%8 -"/,;3" $')-#)((9

1+<#%+ )%1 <+)-;/+&1+'+%1)%- *,%-/,($4 J($");$+% +- )(4

AddT PAfR '/,',$+1 ) .,1+( ,< ",G 0#$;)( )--+%-#,% *)%

>+ 1#/+*-+1 -, )11/+$$ -"+ ',$#-#,% )%1 $*)(+ #%0)/#)%*+

#% ,>I+*- /+*,3%#-#,%8 )$$;.#%3 -")- -"+ ',$#-#,% )%1 $#_+

#%<,/.)-#,% #$ )0)#()>(+ </,. -"+ -,' *,%-/,(4 !$,-$,$ +-

)(4 AddV PAgR #.'(+.+%-+1 ) 0+/$#,% ,< )--+%-#,% $+(+*-#,%

;$#%3 ) *,.>#%)-#,% ,< ) >,--,.&;' <+)-;/+ +7-/)*-#,%

$*"+.+ )%1 ) -,'&1,G% ',$#-#,% $+(+*-#0+ -;%#%3 $*"+.+4

]), +- )(4 QBBU PAdR 1+$*/#>+1 ) ')#/ ,< *,,'+/)-#%3 %+;/)(

%+-G,/O$8 -, +$-#.)-+ ,>I+*- #1+%-#-9 )%1 ,>I+*- -/)%$<,/&

.)-#,%$8 /+$'+*-#0+(94 Y*"#(( +- )(4 QBBA PQBR '/+$+%-+1 )

-,'&1,G%8 O%,G(+13+&>)$+1 /+)$,%#%3 $9$-+. G#-" ) (,G&

(+0+( '/+&'/,*+$$#%3 G"+/+ +9+ .,0+.+%- #$ -, .)7#.#_+

-"+ #%<,/.)-#,% )>,;- -"+ $*+%+4 [+*, k ],(($ QBBU PQAR

G/,-+ ) .,1+( ,< ,>I+*- /+*,3%#-#,% -")- #%*,/',/)-+$ -,'&

1,G% )--+%-#,% .+*")%#$.$ ,% ) "#+/)/*"#*)((9 ,/3)%#_+1 $+-

,< 0#$;)( *,/-#*)( )/+)$4 =% -"+ )>,0+ $-;1#+$8 -"+ .,1+( ,<

[+*, k ],(($ QBBU PQAR G)$ '/,>)>(9 -"+ .,$- >#,(,3#*)((9

'();$#>(+8 )$ #- #%*,/',/)-+$ >,--,.&;' )%1 -,'&1,G% <( G$

#%-, #%1#0#1;)( %+;/,%)( *,.';-)-#,%8 >;- ;%<,/-;%)-+(9 -"+

-,'&1,G% *,%%+*-#,%$ G+/+ 1#$)>(+1 1;/#%3 (+)/%#%3 )%1 %,

/+*,3%#-#,% '+/<,/.)%*+ 1)-) G+/+ /+',/-+14

L"+/+&L")- \+-G,/O$ CLL\ )/+ +.>,1#.+%- ,< )

>/)#%&.#%1 .,1+( *)((+1 [+0+(,'.+%-)( \+-G,/O C[\D4

=% -"+ L"+/+&L")- \+-G,/O Q CLL\&QD +7'+/#.+%- PQQR

1#$*;$$+1 ()-+/8 G+ <,;%1 -")- -"+ *,//+$',%1#%3 %+-G,/O

-")- 1/,'$ -"+ XU&XQlT ().#%)/ $-/;*-;/+ 3)0+ ) /+*,3%#-#,%

/)-+ (,G+/ -")% VBm4 =% ,-"+/ G,/1$8 ) %+-G,/O -")- -/+)-$

-,'&1,G% *,%%+*-#,% $#.#()/ -, >,--,.&;' *,%%+*-#,% C(#O+

) ;%#<,/. (#:;#1 $-)-+ .)*"#%+ PQTRD #$ %,- (#O+(9 -, )*"#+0+

)% )**+'-)>(+ '+/<,/.)%*+4

5.2. Motor Shapes Cortical Areas
J% ,%+ ")%18 "#3"&,/1+/ C#4+48 ()-+/D 0#$;)( *,/-+7 ,<

-"+ )1;(- >/)#% #%*(;1+$ <;%*-#,%)((9 $'+*#<# /+3#,%$ -")-

'/+<+/+%-#)((9 /+$',%1 -, ,>I+*-$8 <)*+$8 ,/ '()*+$4 6,/

+7).'(+8 -"+ <;$#<,/. <)*+ )/+) C66?D /+$',%1$ -, <)*+

$-#.;(# C^)%)G#$"+/ Addf PQUR8 Addd PQVR8 a/#((&Y'+*-,/ +-

)(4 QBBU PQeRD )%1 -"+ ')/)"#'',*).')( '()*+ )/+) C``?D

/+$',%1$ -, '()*+ #1+%-#-9 CJc^++<+ k [,$-/,0$O9 AdfA

PQfR8 @O$-/,. +- )(4 QBBT PQgR8 W,">,- k F,/O#% QBBf

PQdRD4 b,G 1,+$ -"+ >/)#% )**,.'(#$" -"#$ <+)- ,< (,*)(#_#%3

#%-+/%)( /+'/+$+%-)-#,% >)$+1 ,% .+)%#%3K L"9 #$ $;*" )

/+'/+$+%-)-#,% %+*+$$)/9K

=% -"+ *+/+>/)( *,/-+78 -"+/+ #$ ) 1+%$+ G+> ,< )%)-,.&

#*)((9 '/,.#%+%- <++1>)*O C#4+48 -,'&1,G%D *,%%+*-#,%$

C^+%%+19 k W;((#+/ AdgV PTBR8 `+/O+( +- )(4 Adge PTAR8

6+((+.)% k H)% @$$+% AddA8 PTQR8 ^)-_ k F)(()G)9 AddQ

PTTR8 Y)(#% k W;((#+/ AddV PTUR8 n,"%$,% k W;/O")(-+/ Adde

PTVRD4 =- ")$ >++% /+',/-+1 -")- *,/-#*)( <++1>)*O #.'/,0+$

1#$*/#.#%)-#,% >+-G++% <#3;/ )%1 >)*O3/,;%1 )%1 '()9$

) /,(+ #% )--+%-#,% )%1 .+.,/9 Cb;'+ +- )(4 Addg PTeR8

a/,$$>+/3 k ])#_)1) QBBB PTfR8 Y;((#0)% k 1+ Y) PTgRD4 [,

<++1>)*O *,%%+*-#,%$ '+/<,/. )--+%-#,%K 6;/-"+/.,/+8 1,

<++1>)*O *,%%+*-#,%$ '()9 ) /,(+ #% 1+0+(,'#%3 )>$-/)*-#0+

#%-+/%)( /+'/+$+%-)-#,%K

!"+ *,.';-)-#,%)( /,(+$ ,< <++1>)*O *,%%+*-#,%$ #% 1+&

0+(,'#%3 .+)%#%3&>)$+1 #%-+/%)( /+'/+$+%-)-#,%$ ")0+ %,-

>++% *()/#<#+ #% +7#$-#%3 $-;1#+$ /+0#+G+1 )>,0+4 !"+ Y+(<&

?>$-/)*-#0+ ?/*"#-+*-;/+ %+7- #%1#*)-+$ -")- #% -"+ *+/+>/)(

*,/-+78 +)*" <;%*-#,% ()9+/ CXU )%1 XQlTD #$ ) $-)-+ )- -"#$

()9+/4 L+ G#(( $",G -")-8 ;%(#O+ -"+ $-)-+$ #% `JZ[ 8̀

bZZ8 b,'<#+( %+-G,/O )%1 .)%9 ,-"+/$8 -"+ $-)-+$ #%

-"+ Y+(<&?>$-/)*-#0+ ?/*"#-+*-;/+ #%-+3/)-+ #%<,/.)-#,% </,.

>,--,.&;' #%';-$ C<+)-;/+ #%';-$D8 ()-+/)( #%';-$ C*,(()>&

,/)-#0+ *,%-+7-D )%1 -,'&1,G% #%';-$ C)>$-/)*- *,%-+7-$D

#%-, ) *,%*#$+ *,%-#%;,;$ 0+*-,/ /+'/+$+%-)-#,%8 G#-",;- -"+

)/-#<#*#) >,;%1)/#+$ ,< ) $9.>,(#* /+'/+$+%-)-#,%4

5.3. Brain Scale: “Where” and “What” Pathways
Y#%*+ -"+ G,/O ,< M%3+/(+#1+/ )%1 Z#$"O#% AdgQ PTdR8

PUBR8 ) G#1+(9 )**+'-+1 1+$*/#'-#,% ,< 0#$;)( *,/-#*)( )/+)$

#$ #((;$-/)-+1 #% 6#34 Q PTQR8 PAfR4 ? 0+%-/)( ,/ 2G")-5 $-/+).

-")- /;%$ </,. HA8 -, HQ8 HU8 )%1 =! )/+)$ !@J )%1 !@
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LGN

LGN

V1

V4 IT

LIP

MT

MT: middle temporal

PP: posterior parietal

LIP: lateral intraparietal

IT: inferior temporal

DF: dorsal frontal

VF: ventral frontal 

PP DF

Dorsal stream

Ventral stream

Where, how

VF

What, vocalization

(a)

(b)

?

V2

V3

6#3;/+ Q4 C)D b,G 1,+$ -"+ >/)#% 3+%+/)-+ #%-+/%)( /+'/+$+%-)-#,%K !"+ #.)3#%)/9 ')3+ $(#*+$ -"+ >/)#% -, 2'++O5 #%-, #-$ #%-+/%)(
/+'/+$+%-)-#,%4 !"+ ,%(9 +7-+/%)( $,;/*+$ )/+ $+%$,/$ )%1 +<<+*-,/$4 !"+9 )/+ -"+ ',/-$ <,/ -"+ >/)#% -, +7*")%3+ #%<,/.)-#,% G#-" -"+
+7-+/%)( +%0#/,%.+%-4 C>D ?% +7).'(+ ,< >/)#% *,%%+*-#,%$ N -"+ 0#$;,.,-,/ $-/+).$4 =- *,%$#$-$ ,< -G, .)I,/ $-/+).$ ).,%3 ,-"+/$S
-"+ 1,/$)( 2G"+/+ )%1 ",G5 $-/+). )%1 -"+ 0+%-/)( 2G")-5 $-/+).4 !"+ %)-;/+ ,< -"+ '/,*+$$#%3 )(,%3 +)*" $-/+). #$ $")'+1 >9 %,- ,%(9
$+%$,/9 #%';-&,;-';- >;- )($, -"+ .,-,/ #%';-&,;-';-4 =% '/#%*#'(+8 +0+/9 )/+) %++1$ *,%%+*-#,%$ G#-" )(( ,-"+/ )/+)$4 ?% )/+) ')#/ -")- ")$
,%(9 G+)O *,%%+*-#,% .+)%$ -")- -"#$ ')#/ ")$ ,%(9 G+)O $-)-#$-#*)( *,//+()-#,%4 !"#$ 1#)3/). ,%(9 $*"+.)-#*)((9 #((;$-/)-+$ -"+ *,/-#*)(
*,%%+*-#,% ')--+/%$4 @0+/9 -G,&G)9 )//,G .+)%$ -G, ,%+&G)9 )//,G$ #% ,'',$#-+ 1#/+*-#,%$4

*,.';-+$ '/,'+/-#+$ ,< ,>I+*- #1+%-#-9 $;*" )$ $")'+ )%1

*,(,/4 ? 1,/$)( ,/ 2G"+/+5 $-/+). -")- /;%$ </,. HA8 -, HQ8

HT8 Z! )%1 -"+ .+1#)( $;'+/#,/ -+.',/)( )/+)$ ZY!8 )%1 ,%

-, -"+ ',$-+/#,/ ')/#+-)( *,/-+7 C``D *,.';-+$ '/,'+/-#+$ ,<

-"+ (,*)-#,% ,< -"+ $-#.;(;$ ,% -"+ /+-#%) ,/ G#-" /+$'+*- -,

-"+ )%#.)(c$ "+)14 \+;/,%$ #% +)/(9 0#$;)( )/+)$ ")0+ $.)((

$')-#)( /+*+'-#0+ <#+(1 C]6$D )%1 *,1+ >)$#* #.)3+ <+)-;/+$i

%+;/,%$ #% ()-+/ )/+)$ ")0+ ()/3+ ]6$ )%1 *,1+ )>$-/)*-

<+)-;/+$ $;*" )$ >+")0#,/)( /+(+0)%*+4 Y+(+*-#0+ )--+%-#,%

*,,/1#%)-+$ -"+ )*-#0#-9 ,< %+;/,%$ -, )<<+*- -"+#/ *,.'+-#-#,%

)%1 (#%O 1#$-/#>;-+1 ,>I+*- /+'/+$+%-)-#,%$ -, >+")0#,/$ C+4348

$++ -"+ /+0#+G >9 Y+/+%*+$ )%1 h)%-#;$ QBBe PUARD4

L#-" -"+ )>,0+ /#*"8 $;33+$-#0+ #%<,/.)-#,% </,. %+;/,&

$*#+%*+8 = '/,',$+ -")- -"+ 1+0+(,'.+%- ,< -"+ <;%*-#,%$ ,<

-"+ 2G"+/+5 )%1 2G")-5 ')-"G)9$ #$ ()/3+(9 1;+ -,S

AD [,G%$-/+). .,-,/$4 !"+ .,-,/ +%1$ ,< -"+ 1,/$)(

')-"G)9 -")- '+/<,/. ',$#-#,% -)$O$ C+4348 $-/+-*"#%3

)% )/. -, /+)*"#%3 <,/ )% )''(+ ,/ ) -,,(D8 )%1

-"+ .,-,/ +%1$ ,< -"+ 0+%-/)( ')-"G)9 -")- '+/<,/.

-9'+ *()$$#<#*)-#, )%1 *,%*+'-;)( -)$O$ C+4348 1#<<+/+%-

(#.>#* %++1$ >+-G++% ) <,,1 )%1 )% +%+.9Di

QD !,'&1,G% *,%%+*-#,%$4 !"+ -,'&1,G% *,%%+*-#,%$

</,. .,-,/ )/+)$ -")- $")'+ -"+ *,//+$',%1#%3 ')-"&

G)9 /+'/+$+%-)-#,%$4

`;- #% ) $",/- G)98 motor is often abstract4 ?%9 .+)%#%3
-")- *)% >+ *,..;%#*)-+1 >+-G++% ";.)%$ #$ .,-,/#_+1S

$',O+%8 G/#--+%8 ")%1&$#3%+18 +-*4 J< *,;/$+8 2.,-,/ #$

)>$-/)*-5 1,+$ %,- .+)% -")- +0+/9 $-)3+ ,< +0+/9 .,-,/

)*-#,% $+:;+%*+ #$ )>$-/)*-4 b,G+0+/8 -"+ $+:;+%*+$ ,<

.,-,/ )*-#,%$ '/,0#1+ $-)-#$-#*)((9 */;*#)( #%<,/.)-#,% <,/

-"+ 1+0+(,'.+%- ,< #%-+/%)( )>$-/)*-#0+ /+'/+$+%-)-#,%4

5.4. System views
!"+ $9$-+. (+0+( )/*"#-+*-;/+ #$ #((;$-/)-+1 #% 6#34 T4

?% )3+%-8 +#-"+/ >#,(,3#*)( ,/ )/-#<#*#)( *)% '+/<,/.

/+3/+$$#,% )%1 *()$$#<#*)-#,%

Regression: !"+ )3+%- -)O+$ ) 0+*-,/ )$ #%';- C) $+- ,<

/+*+'-,/$D4 6,/ 0#$#,%8 -"+ #%';- 0+*-,/ *,//+$',%1$ -, ) /+-#&

%)( #.)3+4 !"+ ,;-';- ,< -"+ %+-G,/O *,//+$',%1$ -, .,-,/

$#3%)($8 G#-" .;(-#'(+ *,.',%+%-$ -, >+ )*-#0+ C<#/#%3D !"+

>/)#% #$ ) 0+/9 *,.'(+7 $')-#,-+.',/)( /+3/+$$,/4

Classification: !"+ )3+%- *)% '+/<,/. *()$$#<#*)-#, >+&

<,/+ #- ")$ 1+0+(,'+1 $,'"#$-#*)-+1 ";.)% ()%3;)3+ *)')&

>#(#-9 -, 0+/>)((9 -+(( ;$ -"+ %).+ ,< ) *()$$4 6,/ +7).'(+8

+)*" %+;/,% #% -"+ ,;-';- ()9+/ *,//+$',%1$ -, ) 1#<<+/+%-

*()$$4

1) Two signal sources: sensor and motor: !"+ >/)#% <)*+$
) .)I,/ *")((+%3+ )$ $",G% #% 6#34 QC)D4 =- 1,+$ %,- ")0+

-"+ (;7;/9 ,< ")0#%3 ) ";.)% -+)*"+/ -, #.'()%- $9.>,($

#%-, #-8 )$ -"+ >/)#% #$ %,- )**+$$#>(+ 1#/+*-(9 -, -"+ +7-+/%)(

";.)% -+)*"+/4 !";$8 #- .;$- 3+%+/)-+ #%-+/%)( /+'/+$+%&

-)-#,%$ </,. -"+ -G, $#3%)( $,;/*+$S -"+ $+%$,/$ )%1 -"+

+<<+*-,/$ C.,-,/$D4 !"#$ *")((+%3#%3 3,)( #$ )**,.'(#$"+1 >9

-"+ >/)#%c$ G"+/+&G")- %+-G,/O$ $*"+.)-#*)((9 #((;$-/)-+1 #%

6#34 U4 !"+ $9$-+. ")$ -G, .,-,/ )/+)$8 -"+ G"+/+ .,-,/ -")-

#%1#*)-+$ G"+/+ -"+ )--+%1+1 ,>I+*- #$ )%1 -"+ G")- .,-,/

-")- -+(($ G")- -"+ )--+%1+1 ,>I+*- #$4 !"#$ $'+*#)(#_)-#,% ,<

+)*" ')-"G)9 .)O+$ *,.';-)-#,% ,< #%-+/%)( /+'/+$+%-)-#,%

.,/+ +<<+*-#0+4

5.5. Pathway Scale: Bottom-up and Top-down
=- #$ O%,G% -")- *,/-#*)( /+3#,%$ )/+ -9'#*)((9 #%-+/&

*,%%+*-+1 #% >,-" 1#/+*-#,%$ PTQR8 PUQR8 PUTR4 b,G+0+/8
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Retinal

processing

Visual

pathway

Cochlear

processing

Auditory

pathway

Skin

processing

Somatic

pathway

Modulatory

system

Location

motor area

Type 

motor areas

Where, 

location, how

What, concept,

intent

6#3;/+ T4 Y*"+.)-#* *,%%+*-#,%$ <,/ .;(-#.,1)( #%-+3/)-#,%4 Z;(-#&$+%$,/9 )%1 .;(-#&+<<+*-,/ #%-+3/)-#,% #$ )*"#+0+1 -"/,;3" #%-+/)*-#0+
(+)/%#%34 !"+ .,1;()-,/9 C.,-#0)-#,%)(D $9$-+. #$ 1#$-/#>;-+1 ,0+/ -"+ +%-#/+ >/)#% -"/,;3" 1#<<+/+%- -9'+$ ,< %+;/)( -/)%$.#--+/$4 !"+ >(,*O
#% -"+ 1#)3/). ,%(9 #%1#*)-+$ -"+ +7#$-+%*+ ,< -"+ 1#$-/#>;-+1 .,1;()-,/9 $9$-+.4

A

B

Image

LM

TM

Location output

(arm control)

Top-down context

(arm context)

Top-down context

(verbal context)

Type output

(verbal control)

Neurons compete to fire

through lateral connections

A

B

r
c

Excitatory
Inhibitory

(a)

(b)

Top-downTop-down

LEFLRF
Bottom-up

Sensory X Internal Y Motor Z

X

X

Y

Y

Z

Z

Lateral
Bottom-up

SRF MEF

MRFSEF

6#3;/+ U4 ? $#.'(+ LL\ )$ ) $*"+.)-#* 1+0+(,'.+%-)( .,1+( ,< -"+ >/)#%4 C)D !"+ "+7-;'(+ <#+(1 <,/ +)*" %+;/,%S Y]68 Z]68 X]68
Y@68 Z@68 )%1 X@68 -";$ )/+ "#3"(9 /+*;//+%-4 C>D ? $#.'(+ LL\ G#-" <,;/ )/+)$ C#.)3+ )$ -"+ X )/+)8 -"+ >/)#% )$ Y 8 )%1 XZ
)%1 !Z )$ -"+ Z )/+)D )%1 #-$ "+7-;'(+ %+-G,/O /+'/+$+%-)-#,%4 @)*" G#/+ *,%%+*-$ #< -"+ '/+&$9%)'-#* )%1 ',$-&$9%)'-#* %+;/,%$ ")0+
*,&<#/+1 !"+ G+#3"- #$ -"+ </+:;+%*9 ,< '/+&$9%)'-#* *,&<#/#% G"+% -"+ ',$-&$9%)'-#* %+;/,% <#/+$ L#-"#% +)*" *,/-#*)( )/+)8 +)*" %+;/,%
*,%%+*-$ G#-" "#3"(9 *,//+()-+1 %+;/,%$ ;$#%3 +7*#-)-,/9 *,%%+*-#,%$ C+4348 \Z[?&+/3#*D >;- *,%%+*- G#-" "#3"(9 )%-#&*,//+()-+1 %+;/,%$
;$#%3 #%"#>#-,/9 *,%%+*-#,%$ C+4348 a?W?&+/3#*D4 !"#$ <,/*+$ %+;/,%$ #% -"+ $).+ )/+) -, 1+-+*- 1#<<+/+%- <+)-;/+$ #% Y]6 )%1 Z]64 !"+$+
1+0+(,'.+%-)( .+*")%#$.$ /+$;(- #% -"+ $",G% *,%%+*-#,%$4 @0+/9 Y %+;/,% #$ location-specific )%1 type-specific8 *,//+$',%1#%3 -, )%
,>I+*- -9'+ C.)/O+1 >9 #-$ *,(,/D )%1 -, ) (,*)-#,% >(,*O C2× 2 $#_+ +)*"D4 @)*" XZ %+;/,% #$ (,*)-#,%&$'+*#<# )%1 -9'+&#%0)/#)%- C.,/+
#%0)/#)%*+8 +4348 (#3"-#%3&1#/+*-#,% #%0)/#)%*+8 #% .,/+ .)-;/+ LL\$D4 @)*" !Z %+;/,% #$ -9'+&$'+*#<# )%1 (,*)-#,%&#%0)/#)%- C.,/+
#%0)/#)%*+ #% .,/+ .)-;/+ LL\$D4 @)*" .,-,/ %+;/,% ';(($ )(( )''(#*)>(+ *)$+$ </,. Y 4 =- )($, -,'&1,G% >,,$-$ )(( )''(#*)>(+ *)$+$ #%
Y )$ -,'&1,G% *,%-+7-4 ? -G,&G)9 )//,G .+)%$ -G, ,%+&G)9 *,%%+*-#,%$4 L#-" +)*" )/+)8 )(( -"+ *,%%+*-#,%$ G#-"#% -"+ $).+ )/+) )/+
,.#--+1 <,/ *()/#-94

*,.';-)-#,%)( .,1+($ -")- #%*,/',/)-+ >,-" >,--,.&;' )%1

-,'&1,G% *,%%+*-#,%$ ")0+ /+$#$-+1 <;(( )%)(9$#$ PUUR8 PUVR8

PUeR8 PQAR8 PUfR8 PUgR8 PUdR4 !"+ *,.';-)-#,%)( .,1+(8 #(&

(;$-/)-+1 #% 6#34 V8 '/,0#1+$ <;/-"+/ 1+-)#($ )>,;- ",G +)*"

<;%*-#,%)( (+0+( #% *,/-+7 -)O+$ #%';-$ </,. -"+ >,--,.&;'

$#3%)( /+'/+$+%-)-#,% $')*+ X )%1 -,'&1,G% $#3%)( /+'/+&

$+%-)-#,% $')*+ Z -, 3+%+/)-+ )%1 ;'1)-+ $+(<&,/3)%#_+1

*,/-#*)( bridge representation $')*+ Y 4 !"#$ .,1+( <;/-"+/
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 Top-match y
n+1

t
n+1

State z
n+2

=

t
n+2

Area X

Area Y

Area Z

State z
n

if link

if drop prefix

if drop postfix

 Sensory x
n

 Predicted x
n+2

Time: t
n

{
φ(z

n
, x

n
)

φ(x
n
)

φ(z
n
)

6#3;/+ V4 F,/-+7 $*)(+S !"+ $')-#)( Y?Y@ %+-G,/O <,/ >,-" $')-#)( '/,*+$$#%3 )%1 -+.',/)( '/,*+$$#%3 G#-",;- 1+1#*)-+1 -+.',/)(
*,.',%+%-$4 ?- +)*" -+.',/)( ;%#- $",G% )>,0+ C-G, -#.+ </).+$D8 -"/++ >)$#* ,'+/)-#,%$ )/+ ',$$#>(+S (#%O8 1/,' '/+<#7 )%1 1/,' ',$-<#7
?<-+/ '/,'+/ -/)#%#%38 -"+ !FZ #$ )>(+ -, )--+%1 )%9 ',$$#>(+ -+.',/)( *,%-+7- ;' -, -"+ -+.',/)( $).'(#%3 /+$,(;-#,%4

*,.';-)-#,%)((9 '/+1#*-$ -")- ) '/#.)/9 /+)$,% <,/ -"+ 1,/$)(

)%1 0+%-/)( ')-"G)9$ -, >+ )>(+ -, 1+)( G#-" 2G"+/+5 )%1

2G")-5 C,/ )*"#+0#%3 #1+%-#-9 )%1 ',$#-#,%)( #%0)/#)%*+$

PUdRD8 /+$'+*-#0+(98 #$ -")- -"+9 /+*+#0+ -,'&1,G% $#3%)($ -")-

1/#0+ -"+#/ .,-,/$4

6/,. G"+/+ 1,+$ -"+ <,/+>/)#% /+*+#0+ -+)*"#%3 $#3%)($

-")- $;'+/0#$+ #-$ .,-,/$K Y;*" $;'+/0#$+1&.,-,/ $#3%)($

*)% >+ 3+%+/)-+1 +#-"+/ +7-+/%)((9 C+4348 ) *"#(1 ')$$#0+(9

(+)/%$ G/#-#%3 G"#(+ "#$ -+)*"+/ .)%;)((9 3;#1+$ "#$ ")%1D ,/

#%-+/%)((9 C+4348 </,. -"+ -/#)($ 3+%+/)-+1 >9 -"+ $'#%)( *,/1

,/ -"+ .#1 >/)#%D4 ?$ #((;$-/)-+1 #% 6#34 U8 -"+ .,1+( #%1#*)-+$

-")- </,. +)/(9 -, ()-+/ *,/-#*)( )/+)$8 -"+ %+;/,%$ 3/)1;)((9

#%*/+)$+ -"+#/ /+*+'-#0+ <#+(1 )%1 3/)1;)((9 /+1;*+ -"+#/

+<<+*-#0+ <#+(1 )$ -"+ '/,*+$$#%3 ,< -"+ *,//+$',%1#%3 bridge
representations >+*,.+$ (+$$ $+%$,/9 )%1 .,/+ .,-,/#*4

5.6. Cortex Scale: Feature Layers and Assistant Layers
!"+ *+/+>/)( *,/-+7 *,%-)#%$ $#7 ()9+/$S ()9+/ XA #$ -"+

$;'+/<#*#) ()9+/ )%1 ()9+/ Xe #$ -"+ 1++' ()9+/4 L+%3 +-

)(4 QBBg PVBR /+)$,%+1 -")- XU )%1 XQlT )/+ -G, <+)-;/+

1+-+*-#,% ()9+/$ )$ $",G% #% 6#34 V G#-" XV )$$#$-#%3 XQlT

)%1 Xe )$$#$-#%3 XU8 #% -"+ $+%$+ ,< +%)>(#%3 (,%3 /)%3+

()-+/)( #%"#>#-#,%4 Y;*" (,%3 /)%3+ #%"#>#-#,%$ +%*,;/)3+

1#<<+/+%- %+;/,%$ -, 1+-+*- 1#<<+/+%- <+)-;/+$4 !"+ .,1+(

#((;$-/)-+1 #% 6#34 V G)$ #%<,/.+1 >9 -"+ G,/O ,< 6+((+.)%

k H)% @$$+% PTQR8 F)(()G)9 )%1 *,G,/O+/$ PUTR8 PUQR8 )%1

,-"+/$ C+4348 PTfRD4 !"+/+ )/+ %, -,'&1,G% *,%%+*-#,%$ </,.

XQlT -, XU8 #%1#*)-#%3 -")- XU ;$+$ ;%$;'+/0#$+1 (+)/%#%3

CMD G"#(+ XQlT ;$+$ $;'+/0#$+1 CYD (+)/%#%34 L+%3 +- )(4

QBBg PVBR /+',/-+1 -")- $;*" ) paired "#+/)/*"9 MYMY (+1 -,
>+--+/ /+*,3%#-#,% /)-+$ -")% -"+ ;%')#/+1 YYYY )(-+/%)-#0+4

5.7. Level Scale: the Dually Optimal CCI LCA
?$ $",G% #% 6#34 V8 3#0+% ')/)((+( #%';- $')*+ *,%$#$-#%3

,< -"+ >,--,.&;' $')*+ X )%1 -"+ -,'&1,G% #%';- $')*+

Z8 /+'/+$+%-+1 )$ X × Z8 -"+ .)I,/ 1+0+(,'.+%-)( 3,)( ,<
+)*" *,/-#*)( (+0+( CXU ,/ XQlT )$ -G, /+'/+$+%-)-#0+ (+0+($

,< +)*" )/+) #% 6#34 VD #$ -, ")0+ 1#<<+/+%- %+;/,%$ #% -"+

(+0+( -, 1+-+*- 1#<<+/+%- <+)-;/+$8 >;- %+)/>9 %+;/,%$ $",;(1

1+-+*- $#.#()/ <+)-;/+$4

@)*" <+)-;/+ (+0+( <)*+$ -G, ')#/$ ,< *,%<(#*-#% */#-+/#)

G"#*" )/+ '/,>)>(9 #.'(#*#- 1;/#%3 >#,(,3#*)( +0,(;-#,%S

CAD !"+ $')-#)( ')#/S G#-" #-$ (#.#-+1 %;.>+/ ,< %+;/,%$8

-"+ (+0+( .;$- (+)/% -"+ >+$- #%-+/%)( /+'/+$+%-)-#,% </,.

-"+ +%0#/,%.+%- G"#(+ O++'#%3 ) $-)>(+ (,%3&-+/. .+.,/94

CQD !"+ $')-#,-+.',/)( ')#/S G#-" #-$ (#.#-+1 *"#(1 -#.+ <,/

(+)/%#%38 -"+ (+0+( .;$- %,- ,%(9 (+)/% -"+ >+$- /+'/+$+%-)-#,%

>;- )($, (+)/% :;#*O(9 G#-",;- <,/3+--#%3 #.',/-)%- .+%-)(

$O#(($ )*:;#/+1 (,%3 -#.+ )3,4 !"+ $')/$+ *,1#%3 '/#%*#'(+

PVAR #$ ;$+<;( -, )11/+$$ -"+ <#/$ ')#/S ?((,G#%3 ,%(9 ) <+G

%+;/,%$ C>+$- .)-*"+1D -, <#/ )%1 ;'1)-+4 J-"+/ %+;/,%$

#% -"+ (+0+( )/+ (,%3&-+/. .+.,/9 >+*);$+ -"+9 )/+ %,-

)<<+*-+14 =% ,-"+/ G,/1$8 #% +)*" *,/-#*)( /+3#,%8 ,%(9 *(,$+(9

/+()-+1 .+%-)( $O#(($ )/+ /+'()*+1 +)*" -#.+4 !"+/+<,/+8

-"+ /,(+ ,< +)*" %+;/,% )$ G,/O#%3 .+.,/9 ,/ (,%3&-+/.

.+.,/9 #$ 19%).#*8 1+'+%1#%3 ,% -"+ <+)-;/+ .)-*" C#4+48

>#%1#%3D G#-" -"+ #%';-8 )$ $",G% #% 6#34 e4 b,G+0+/8 -"#$

/,;3" #1+) #$ %,- $;<<#*#+% <,/ ,'-#.)(#-94

!"+ *,/-+7 #%$'#/+1 F)%1#1 =%*/+.+%-)( F,0)/#)%*+&</++

CFF=D X,>+ F,.',%+%- ?%)(9$#$ CXF?D PVQR8 PVTR ")$ -"+

1+$#/+1 1;)( ,'-#.)(#-9S $')-#)( )%1 $')-#,-+.',/)(8 )$ #((;$&

-/)-+1 #% 6#34 e4 FF= XF? .,1+($ ,'-#.)( $+(<&,/3)%#_)-#,%

>9 ) *,/-#*)( (+0+( G#-" ) (#.#-+1 /+$,;/*+S c %+;/,%$4 !"+
*,/-#*)( (+0+( -)O+$ -G, ')/)((+( #%';- $')*+$S -"+ >,--,.&;'

$')*+ X )%1 -,'&1,G% $')*+ Z 1+%,-+1 )$ P = X × Z )$

#((;$-/)-+1 >9 6#34 V4 @)*" #%';- 0+*-,/ #$ -"+% 1+%,-+1 )$

p = (x, z) G"+/+ x ∈ X )%1 z ∈ Z4 FF= XF? *,.';-+$ c
<+)-;/+ 0+*-,/$ v1,v2, ...,vc4 ?$$,*#)-+1 G#-" -"+$+ c <+)-;/+
0+*-,/$ #$ ) ')/-#-#,% ,< -"+ #%';- $')*+ P #%-, c 1#$I,#%-
/+3#,%$ R1, R2, ..., Rc8 $, -")- -"+ #%';- $')*+ P #$ -"+ ;%#,%
,< )(( -"+$+ /+3#,%$4 6,/ -"+ ,'-#.)( 1#$-/#>;-#,% ,< %+;/,%)(

/+$,;/*+8 G+ *,%$#1+/ -")- +)*" #%';- 0+*-,/ p #$ /+'/+$+%-+1

>9 -"+ G#%%+/ <+)-;/+ vj G"#*" ")$ -"+ "#3"+$- /+$',%$+ rj S

j = arg max
1≤i≤c

ri
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c

X

Y

Z

Bridge

Bottom

bank

Top

bank

C)D C>D

6#3;/+ e4 C)D !"+ 1+<);(- *,%%+*-#,% ')--+/% ,< +0+/9 %+;/,% #% -"+ >/)#%4 !"+ )/+) Y #$ ) >/#13+ <,/ #-$ -G, >)%O$ X )%1 Z4 !"+
*,%%+*-#,%$ )/+ (,*)( >;- -G,&G)94 W(;+S %+;/,%)( #%';-i /+1S )7,%)( ,;-';-4 6,/ +)*" <+)-;/+ %+;/,% C+4348 '9/).#1)( %+;/,%D #% -"+ >/)#%8
$,.+ %+)/ %+;/,%$ C+4348 3/++% <,/ -"+ *+%-+/ %+;/,%D )/+ *,%%+*-+1 -, -"+ %+;/,% >9 +7*#-)-,/9 *,%%+*-#,%$ C<,/ '/+1#*-#,%D )%1 $,.+ <)/
%+;/,%$ CG"#-+ ,%+$D )/+ *,%%+*-+1 -, -"+ *+%-+/ %+;/,% >9 #%"#>#-,/9 *,%%+*-#,%$ C*,.'+-#-#,% /+$;(-#%3 #% 1+-+*-#,% ,< 1#<<+/+%- <+)-;/+$
>9 1#<<+/+%- %+;/,%$D4 \+;/,%$ -")- )/+ %,- *,%%+*-+1 G#-" -"+ *+%-+/ %+;/,% c )/+ %,- *,%$#1+/)>(9 *,//+()-+1 ,/ )%-#&*,//+()-+1 G#-" #-4
C>D F+((&*+%-+/+1 (+)/%#%34 !"+ ;''+/ ()9+/ #%1#*)-+$ -"+ ',$#-#,%$ <,/ -"+ %+;/,%$ #% -"+ $).+ )/+)S <#/#% %+;/,%$ )/+ C*,%-+7-&1+'+%1+%-D
G,/O#%3 .+.,/9 )%1 -",$+ 1, %,- <#/ )/+ C*,%-+7- 1+'+%1+%-D (,%3&-+/. .+.,/94 !"+ (,G+/ ()9+/ #%1#*)-+$ -"+ 0+/9 "#3" 1#.+%$#,%)(
#%';- $')*+ CX × ZD ,< -"+ )/+) Y 4 !"+ ';/'(+ )/+) #% X × Z #%1#*)-+$ -"+ .)%#<,(1 ,< -"+ #%';- 1#$-/#>;-#,%4 !"+ *,%%+*-#,% *;/0+
</,. -"+ ;''+/ %+;/,% )%1 (,G+/ $.)(( *#/*(+ #%1#*)-+$ -"+ *,//+$',%1+%*+ >+-G++% -"+ ;''+/ %+;/,% )%1 -"+ <+)-;/+ -")- #- 1+-+*-$4 !"+
%+;/,%)( G+#3"- 0+*-,/$ .;$- :;#*O(9 .,0+ -, -"#$ .)%#<,(1 )$ -"+ #%';-$ )/+ /+*+#0+1 )%1 <;/-"+/ -"+ 1+%$#-9 ,< -"+ %+;/,%$ #% -"+
';/'(+ )/+) $",;(1 /+<(+* -"+ 1+%$#-9 ,< -"+ #%';- 1#$-/#>;-#,%4 !"+ *")((+%3+ ,< (+)/%#%3 )%1 <)$- )1)'-)-#,% )- 0)/#,;$ .)-;/)-#,% $-)3+$
,< 1+0+(,'.+%- #$ )$ <,((,G$S !"+ ;'1)-#%3 -/)I+*-,/9 ,< +0+/9 %+;/,% #$ ) "#3"(9 %,%(#%+)/ -/)I+*-,/94 !"+ $-)-#$-#*)( +<<#*#+% 9 -"+,/9
<,/ %+;/,%)( G+#3"- ;'1)-+ C).%+$#* )0+/)3+D /+$;(-$ #% -"+ %+)/(9 .#%#.;. +//,/ #% +)*" )3+&1+'+%1+%- ;'1)-+8 .+)%#%3 %,- ,%(9 -"+
1#/+*-#,% ,< +)*" ;'1)-+ #$ %+)/(9 ,'-#.)(8 >;- )($, +0+/9 $-+' (+%3-"4

G"+/+ ri #$ -"+ '/,I+*-#,% ,< #%';- p ,%-, -"+ %,/.)(#_+1

<+)-;/+ 0+*-,/ viS ri = p · (vi/‖vi‖)4 !"+ <,/. ,< )''/,7#&
.)-#,% ,< p #$ /+'/+$+%-+1 >9 p̂ = rivi/‖vi‖ )%1 -"+ +//,/
,< -"#$ /+'/+$+%-)-#,% <,/ p #$ e(p) = ‖p̂ − p‖4
1) Spatial optimality: !"+ $')-#)( ,'-#.)(#-9 /+:;#/+$ -")-

-"+ $')-#)( /+$,;/*+ 1#$-/#>;-#,% #% -"+ *,/-#*)( (+0+( #$

,'-#.)( #% .#%#.#_#%3 -"+ /+'/+$+%-)-#,%)( +//,/4 6,/ -"#$

,'-#.)(#-98 -"+ *,/-#*)(&(+0+( 1+0+(,'.+%-)( '/,3/). .,1&

+(+1 >9 FF= XF? *,.';-+$ -"+ >+$- <+)-;/+ 0+*-,/$ V =
(v1,v2, ...,vc) $, -")- -"+ +7'+*-+1 $:;)/+ )''/,7#.)-#,%
+//,/ ‖p̂(V ) − p‖2 #$ $-)-#$-#*)((9 .#%#.#_+1S

V ∗ = (v∗
1,v

∗
2, ...,v

∗
c ) = arg min

V
E‖p̂(V ) − p‖2. CAD

G"+/+ E 1+%,-+$ $-)-#$-#*)( +7'+*-)-#,%4 !"+ .#%#.;. +//,/

.+)%$ -"+ ,'-#.)( )((,*)-#,% ,< (#.#-+1 %+;/,%)( /+$,;/*+S

</+:;+%- +7'+/#+%*+ #$ )$$#3%+1 G#-" .,/+ %+;/,%$ C+4348

";.)% <)*+ /+*,3%#-#,%D >;- /)/+ +7'+/#+%*+ #$ )$$#3%+1 G#-"

<+G+/ %+;/,%$ C+4348 <( G+/ /+*,3%#-#,% <,/ ) %,%+7'+/-D4

!"#$ ,'-#.#_)-#,% '/,>(+. .;$- >+ *,.';-+1 #%*/+.+%-)((98

>+*);$+ -"+ >/)#% /+*+#0+$ $+%$,/#.,-,/ +7'+/#+%*+ #%*/+&

.+%-)((94 ?$ -"+ <+)-;/+ 0+*-,/$ )/+ #%*/+.+%-)((9 ;'1)-+1

</,. +7'+/#+%*+8 -"+ G#%%+/ %+;/,%$ <,/ -"+ ')$- #%';-$ )/+

%,- %+*+$$)/#(9 -"+ $).+ #< ')$- #%';-$ )/+ <+1 #%-, -"+ >/)#%

)3)#% C+4348 ')/+%-$c $'++*" G"+% -"+#/ >)>9 G)$ (#--(+ #$

"+)/1 )3)#% >9 -"+ 3/,G%&;' >)>9D4 b,G+0+/8 G"#(+ -"+

<+)-;/+ 0+*-,/$ )/+ $-)>#(#_+1 -"/,;3" +7-+%$#0+ +7'+/#+%*+8

-"+ ')/-#-#,% ,< -"+ #%';- $')*+ >+*,.+$ )($, $-)>(+4 a#0+%

) <# +1 ')/-#-#,%8 #- ")$ >++% '/,0+1 -")- -"+ >+$- <+)-;/+ $+-

V ∗ *,%$#$-$ ,< -"+ c (,*)( <#/$ '/#%*#')( *,.',%+%- 0+*-,/$8
,%+ <,/ +)*" /+3#,% Ri4 !"+ -+/. 2(,*)(5 .+)%$ -")- -"+

'/#%*#')( *,.',%+%- 0+*-,/ <,/ /+3#,% Ri ,%(9 *,%$#1+/$ -"+

$).'(+$ -")- <)(( #%-, /+3#,% Ri4 ?$ -"+ ')/-#-#,% #$ -/)*O#%3

) $(,G(9 *")%3#%3 +%0#/,%.+%- C+4348 G"#(+ -"+ *"#(1 3/,G$

;'D8 -"+ ,'-#.)( <+)-;/+ $+- V ∗ -/)*O$ -"+ $(,G(9 *")%3#%3

#%';- 1#$-/#>;-#,% C*)((+1 %,%$-)-#,%)/9 /)%1,. '/,*+$$D4

=%-;#-#0+(9 $'+)O#%38 -"+ $')-#)( ,'-#.)(#-9 .+)%$ -")-

G#-" -"+ $).+ *,/-#*)( $#_+8 )(( -"+ *"#(1/+% G#(( +0+%-;)((9

'+/<,/. )- -"+ >+$- (+0+( )((,G+1 >9 -"+ *,/-#*)( $#_+4

b,G+0+/8 -, /+)*" -"+ $).+ .+%-)( $O#(( (+0+( ,%+ *"#(1

.)9 /+:;#/+ .,/+ -+)*"#%3 -")% )%,-"+/4 !"+ $')-#,-+.',/)(

,'-#.)(#-9 #$ 1++'+/4 =- /+:;#/+$ -"+ >+$- '+/<,/.)%*+ <,/

+0+/9 -#.+ t4 !")- #$8 -"+ *"#(1 (+)/%$ :;#*O+$- )((,G+1 >9
-"+ *,/-#*)( $#_+ )- +0+/9 $-)3+ ,< "#$ )3+4

2) Temporal optimality: !"+ $')-#,-+.',/)( ,'-#.)(#-9
3#0+$ ,'-#.)( $-+' $#_+$ ,< (+)/%#%34 @)*" %+;/,% -)O+$

/+$',%$+ G+#3"-+1 #%';- u(t) = r(t)x(t) )- -#.+ t C#4+48 b+>&
>#)% #%*/+.+%-D4 6/,. -"+ .)-"+.)-#*)( -"+,/9 ,< $-)-#$-#*)(

+<<#*#+% 98 FF= XF? 1+-+/.#%+$ -"+ ,'-#.)( <+)-;/+ 0+*-,/$

V ∗(t) = (v∗
1(t),v

∗
2(t), ...,v

∗
c (t)) <,/ +0+/9 -#.+ #%$-)%- t

$-)/-#%3 </,. -"+ *,%*+'-#,% -#.+ t = 08 $, -")- -"+ 1#$-)%*+
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</,. V ∗(t) -, #-$ -)/3+- V ∗ #$ .#%#.#_+1S

V ∗(t) = )/3min
V (t)

E‖V (t) − V ∗‖2. CQD

FF= XF? )#.$ )- -"#$ 1++'+/ ,'-#.)(#-9 N -"+ $.)((+$-

)0+/)3+ +//,/ </,. -"+ $-)/-#%3 -#.+ C>#/-" ,< -"+ %+-G,/OD

;' -, -"+ *;//+%- -#.+ t8 ).,%3 )(( -"+ ',$$#>(+ +$-#.)-,/$8
;%1+/ $,.+ /+3;()/#-9 *,%1#-#,%$4 ? *(,$+1 <,/. $,(;-#,%

G)$ <,;%1 -")- );-,.)-#*)((9 3#0+$ -"+ ,'-#.)( /+-+%-#,% /)-+

)%1 -"+ ,'-#.)( (+)/%#%3 /)-+ C#4+48 $-+' $#_+D )- +)*" $9%)'-#*

;'1)-+ PVQR

=% $;..)/98 -"+ $')-#)( ,'-#.)(#-9 (+)1$ -, b+>>#)% #%*/+&

.+%-)( 1#/+*-#,%S /+$',%$+ G+#3"-+1 '/+&$9%).'-#* )*-#0#-9

CrpD4 !"+ 1++'+/ $')-#,-+.',/)( ,'-#.)(#-9 (+)1$ -, -"+ >+$-
(+)/%#%3 /)-+$8 );-,.)-#*)((9 1+-+/.#%+1 >9 -"+ ;'1)-+ )3+

,< +)*" %+;/,%4 !"#$ #$ (#O+ 1#<<+/+%- /)*+/$ /)*#%3 ,% )

/,;3" -+//)#% )(,%3 ) $+(<&1+-+/.#%+1 -/)I+*-,/9 -,G)/1 )%

;%O%,G% -)/3+-4 !"+ $')-#)((9 ,'-#.)( /)*+/$8 3;#1+1 >9

b+>>#)% 1#/+*-#,%$8 1,+$ %,- O%,G $-+' $#_+$4 !";$8 -"+9

*,0+/ ,-"+/ -/)I+*-,/#+$ -")- /+:;#/+ .,/+ $-+'$4 !"+ $')&

-#,-+.',/)((9 ,'-#.)( /)*+/8 FF= XF?8 *,//+*-(9 +$-#.)-+$

%,- ,%(9 -"+ ,'-#.)( 1#/+*-#,% )- +0+/9 $-+' )$ #((;$-/)-+1 #%

6#34 e8 >;- )($, -"+ ,'-#.)( $-+' $#_+ )- +0+/9 $-+'4 =% ,;/

+7'+/#.+%-$8 FF= XF? ,;- '+/<,/.+1 -"+ Y+(<&J/3)%#_)-#,%

Z)' CYJZD )(3,/#-". >9 )% ,/1+/ C,0+/ AB -#.+$D #% -+/.$

,< '+/*+%-)3+ 1#$-)%*+ *,0+/+1 </,. -"+ #%#-#)( +$-#.)-+

-, -"+ -)/3+-4 !"#$ G,/O )($, '/+1#*-$ *+((&)3+ 1+'+%1+%-

'()$-#*#-9 $*"+1;(+ G"#*" %++1$ -, >+ 0+/#<#+ >#,(,3#*)((94

6. Temporal Processing

Z);O k W;,%,.)%, QBBU PVUR )/3;+1 -")- -"+ >/)#%

;$+$ #-$ #%-/#%$#* .+*")%#$.$ -, 1+)( G#-" -#.+8 )%1 #- 1,+$

%,- ")0+ +7'(#*#- 1+()9 (#%+$ )%1 1,+$ %,- ")0+ ) 3(,>)(

*(,*O4 [/+G k ?>>,-- QBBe PVVR '/,',$+1 -")- -"+ 3/)1;)(

*")%3+ #% -"+ (+0+( ,< .+.>/)%+ ',-+%-#)( #%$#1+ ) %+;/,%

.)9 /+*,/1 $,.+ -+.',/)( #%<,/.)-#,%4 b,G+0+/8 -"#$ $++.$

)($, %,- $;<<#*#+% )%1 /,>;$- <,/ (,%3 -#.+ 1+'+%1+%*98 )$

)/3;+1 >9 =-, +- )(4 QBBg PVeR4 b,G -"+ *,/-+7 1+)($ G#-"

(,%3 -#.+ *,%-+7- ")$ >++% +(;$#0+8 +$'+*#)((9 *,%$#1+/)>(9

>+9,%1 )/,;%1 TB .$ .,1+(+1 >9 Y'#O+ !#.#%3&[+'+%1+%-

`()$-#*#-9 CY![`D PVfR8 PVgR4

!, 1#$*;$$ ",G -"+ >/)#% 1+)( G#-" -#.+8 #- #$ >+%+<#*#)

-, 1#$*;$$ -"+ 6#%#-+ ?;-,.)-) C6?D8 )($, *)((+1 <#%#- $-)-+

.)*"#%+$4 =% -"+ $9.>,(#* G,/(1 G#-" 0,*)>;()/9 Σ8 )
$+%$,/9 $+:;+%*+ ,< ) (#<+ </,. *,%*+'-#,% ;' -, -"+ *;//+%-

-#.+ #$ ) $-/#%3 x ∈ Σ∗8 G"+/+ Σ∗ 1+%,-+$ -"+ $+- ,< )((

$-/#%3$ ,< <#%#- (+%3-"$4 =< -"+ /+:;#/+1 $O#(( $+- S <,/ )%

)3+%- *)% >+ 1+<#%+ >9 ) ')/-#-#,% ,< Σ∗ #%-, c +:;#0)(+%-
$+-$S

Σ∗ = [q1] ∪ [q2] ∪ ... ∪ [qc]

G"+/+ qi #$ -"+ +:;#0)(+%- '+/*+'-#0+&*,3%#-#0+&>+")0#,/

$-)-+8 '(;$ -"+ $-)-+ -/)%$#-#,%$ ).,%3 -"+$+ $-)-+$ #% -"+

<,/. ,< q
σ

−→ q′4
? [+0+(,'.+%-)( \+-G,/O C[\D #$ ) 3+%+/)(#_)-#,% ,<

L"+/+&L")- \+-G,/O G",$+ .,-,/ )/+) *)% /+'/+$+%- )%9

$-)-+S (,*)-#,%8 -9'+8 ,/ )%9 ,-"+/ *,3%#-#0+ $-)-+ ,/ >+")0#,/

$-)-+ ,/ >,-"4 =- ")$ >++% +$-)>(#$"+1 -")- 3#0+% )%9 6?8 )

[\ *)% $#.;()-+ )%9 6? PVdR4

6/,. -"+ -"+,/9 ,< 6? PeBR8 PeAR8 -"+ )>,0+ *,%1#-#,%$

<,/ $-)-+ ')/-#-#,% )%1 $-)-+ -/)%$#-#,%$ )/+ +:;#0)(+%- -, -"+

+7#$-+%*+ ,< -"+ *,//+$',%1#%3 6?4 =- *)% >+ '/,0+1 -")- )

[\ *)% $#.;()-+ )%9 6?4 6;/-"+/8 1;/#%3 (+)/%#%38 -"+ [\

%++1$ -, (+)/% +0+/9 $-)-+ -/)%$#-#,% ,< -"+ 6? ,%(9 ,%*+4

?(-",;3" -"+ )>,0+ 1#$*;$$#,% 1,+$ %,- +7'(#*#-(9 .+%-#,%

-#.+8 )(( -"+ -#.+ '/,'+/-#+$ )/+ #.>+11+1 #% -"+ *,%*+'-

,< +:;#0)(+%- $-)-+$8 $;*" )$ -"+ $O#(($ -, +$-#.)-+ -#.+

1;/)-#,%8 1+)( G#-" -#.+ G)/'#%38 *,%1;*- )/>#-/)/9 -+.',/)(

)--+%-#,%8 )%1 1+)( G#-" *,%-+7- ,< )%9 -+.',/)( (+%3-"4

!",$+ '/,'+/-#+$ )/+ +7'(#*#-(9 '/,0+1 #% L+%3 QBAB PeQR4

!"#$ *,.'(+-+%+$$ #$ $9.>,(#* $#%*+ -"+ +%0#/,%.+%- ,<

6? #$ $9.>,(#*4 ? .)I,/ 1#<<+/+%*+ >+-G++% ) $9.>,(#*

G,/(1 )%1 -"+ /+)( G,/(1 #$ -")- -"+ ()--+/ .;$- 1+)( G#-"

)--+%-#,% #% %+G ;%,>$+/0+1 +%0#/,%.+%-$4 !"+%8 ",G )

(+)/%+1 [\ '+/<,/.$ #% ) %+G +%0#/,%.+%- )%1 #- *)%

3+%+/)(#_+ 1+'+%1$ ,% <)*-,/$ $;*" )$ -"+ $#.#()/#-9 >+-G++%

) %+G +%0#/,%.+%- )%1 -"+ (+)/%+1 +%0#/,%.+%-$4 =- #$

#%-+/+$-#%3 "+/+ -, ;-#(#_+ -"+ ',G+/ ,< -"+ );-,.)-) -"+,/9

)%1 -"+ >+%+<# ,< ")0#%3 .)''+1 )%9 )/>#-/)/9 >;- $-)-#*

)%1 $9.>,(#* 6? -, ) 3+%+/)( ';/',$+ >;- 19%).#* )%1

+.+/3+%- [\4 M$#%3 -"+ *)')>#(#-9 ,< [\ -, (+)/% )%9 6#%#-+

?;-,.)-,% C6?D8 #- *)% >+ '/,0+1 -")- [\ *)% )>$-/)*-

)- (+)$- )$ G+(( )$ 6?&>)$+1 $9.>,(#* .,1+($ PeTR4 !"#$

)11/+$$+$ -"+ *,//+*- */#-#*#$.$ >9 Z)/0#% Z#%$O9 PeUR )%1

,-"+/$ #% -")- -/)1#-#,%)( %+;/)( %+-G,/O$ 1, %,- )>$-/)*-

G+((4

!"+ [\ ")$ -G, -9'+$ )*-#,% )%1 -G, -9'+$ ,< $+%$#%3

'/,',$+1 >9 L+%3 QBBf PATR4 =%-+/%)( )*-#,% #$ *)((+1

internal attention "+/+ )%1 +7-+/%)( )*-#,% #$ *)((+1 external
behaviors4 =%-+/%)( $+%$#%3 #$ )**,.'(#$"+1 >9 );-,%,.,;$
#%-+/%)( G#/#%38 internal competition )%1 +.+/3+%- /+'/+$+%&
-)-#,%4 @7-+/%)( $+%$#%3 #$ /+)(#_+1 >9 -"+ $+%$,/$ ,< -"+ [\

)%1 #-$ +<<+*-,/$ C+4348 $)**)1+$8 (,*,.,-#,% )%1 (#.> )*-#,%$

G"#*" *")%3+ G")- #$ $+%$+1D4

!"+ +7-+/%)( >+")0#,/$ $",;(1 #%*(;1+ +7'/+$$#,%$ )>,;-

'+/*+'-#,% )%1 *,3%#-#,% C+4348 $'+)OD8 )$ G+(( )$ )*-;)( )*&

-#,%$ )*-#%3 ,% -"+ +7-+/%)( '"9$#*)( G,/(14 ?(-",;3" -",$+

$O#(($ )/+ 0+/9 1#<<+/+%- ,% $;/<)*+8 -"+ [\ .,1+( -/+)-$

-"+. #% ) ;%#<#+ G)9 $, -")- ) $#%3(+ ;%#<#+ 1+0+(,'.+%-)(

'/,3/). C[`D ,< ) [\&>)$+1 >/)#% .,1+( ',-+%-#)((9 #$

$;<<#*#+% -, .,1+( *,.'(+7 $O#(($4 =- #$ $-#(( ;%O%,G% )-

-"#$ -#.+ G")- $;>$-)%-#)( (#.#-)-#,%$ $;*" ) .,1+( ")$ #%

.,1+(#%3 -"+ ";.)% >/)#%&.#%14

7. Experiments

!"#$ #%-/,1;*-#,% #$ -"+,/+-#*)(4 @7'+/#.+%-)( 1#$*;$$#,%

#$ >+9,%1 -"+ $*,'+ ,< -"#$ #%-/,1;*-#,%4 Y,.+ +7'+/#.+%-)(

/+$;(-$ 3;#1+1 >9 -"#$ -"+,/9 ")0+ ';>(#$"+1 +($+G"+/+4 ?

0#$;)( LL\&Q PQQR /+)*"+1 dQ4Vm #% ,>I+*- /+*,3%#-#,%

/)-+ )%1 A4V '#7+($ #% )0+/)3+ ',$#-#,% +//,/ G#-" fVm

,< -"+ )/+) #% +)*" #.)3+ <#((+ G#-" ;%O%,G% %)-;/)(
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>)*O3/,;%1$4 !"+ LL\&T PeVR ")$ $",G% ) *)')>#(#-9 -,

1+)( G#-" .;(-#'(+ (+)/%+1 ,>I+*-$ #% *,.'(+7 >)*O3/,;%1$4

!"+ ;$+/ *)% $'+*#<9 +#-"+/ 3,)( C(,*)-#,% ,/ -9'+D )%1

LL\&T /+',/-$ -"+ /+)$,%#%3 /+$;(-$ <,/ ,-"+/ *,%*+'-$

C</,. (,*)-#,% 3,)( -, -9'+8 ,/ </,. -9'+ 3,)( -, (,*)-#,%D4
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Abstract 

In recent years, half a dozen major research groups have simulated 

or constructed sizeable networks of artificial neurons, with the 

ultimate goal to emulate the entire human brain.  At this point, 

these projects are a long way from that goal: they typically 

simulate thousands of mammalian neurons, versus tens of billions 

in the human cortex, with less dense connectivity as well as less-

complex neurons. While the outputs of the simulations 

demonstrate some features of biological neural networks, it is not 

clear how exact the artificial neurons and networks need to be to 

invoke system behavior identical to biological networks and it is 

not even clear how to prove that artificial neural network behavior 

is identical in any way to biological behavior.  However, enough 

progress has been made to draw some conclusions and make 

comparisons between the leading projects.  Some approaches are 

more scalable, some are more practical with current technologies, 

and some are more accurate in their emulation of biological 

neurons.  In this paper, we examine the pros and cons of each 

approach and make some predictions about the future of artificial 

neural networks and the prospects for whole brain emulation. 

Keywords: biomimetic, neuromorphic, electronic, artificial brain, 

neuron, intelligence 

1. Introduction 

Reverse-engineering the brain is one of the Grand 

Challenges posed by the United States National Academy 

of Engineering [1]. In this paper, we assess current status in 

approaching this difficult goal of brain emulation.  We 

contrast competing approaches, and examine the major 

obstacles. 

Artificial neurons and neural networks were proposed as 

far back as 1943, when Warren McColluch and Walter Pitts 

[2] proposed a “Threshold Logic Unit” with multiple 

weighted binary inputs combined to produce a binary 

output based on a threshold value. More sophisticated 

neural models were subsequently developed, including 

Rosenblatt’s popular “perceptron” model [3] and others we 

examine in this article.  In 1952, Hodgkin and Huxley [4] 

published a model of ionic currents that provided the first 

basis for mathematical modeling and simulation of 

biological neurons and their action potentials, with the help 

of Wilfred Rall’s [5] theory of spatiotemporal integration, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

non-linear summation, and conductance of synaptic signals.  

These models have likewise been enhanced over the years 

by researchers examining synaptic transmission, integration, 

and plasticity. 

Over the past 50 years, advances in technology have 

successively and phenomenally increased our ability to 

emulate neural networks with speed and accuracy.
1
  At the 

same time, and particularly over the past 20 years, our 

understanding of neurons in the brain has increased 

substantially, with imaging and microprobes contributing 

significantly to our understanding of neural physiology.   

These advances in both technology and neuroscience 

make possible the projects we discuss in this paper, aimed 

at modeling large numbers of interconnected neurons.  

Today it is feasible to emulate small but non-trivial portions 

of the brain, for example thousands of neurons in the visual 

cortex.  Each approach has advantages and shortcomings 

when meeting the challenges posed by an artificial brain.  

We will examine the leading approaches and technologies, 

along with their pros and cons.  We will conclude with a 

discussion of technological and architectural challenges for 

an artificial brain, and some debate on future research 

directions. 

1.1. Motivation for Brain Emulation 

Three motivations are frequently cited for brain emulation: 

1. Researchers hope to gain a better understanding of 

how the brain works (and malfunctions) by creating 

simulations.  A model can provide insight at all 

levels, from the biochemistry and neurochemical 

behavior of individual cells to the behavior of 

networks of neurons in the cortex and other parts of 

the brain. 

2. Some researchers feel progress in artificial 

intelligence over the past 50 years has been 

insufficient to lead to intelligent behavior.  Ideas 

from simulations of neural networks may yield new 

ideas to develop intelligent behavior in computers, 

                                                 
1Some authors refer to “simulating” neurons in software and “emulating” 

neurons in hardware, but for simplicity in this paper we use the term 

“emulation” to refer to hardware, software, and hybrid implementations. 

Review Paper 



Natural Intelligence: the INNS Magazine                   18                   Volume 1, Issue 3, Spring/Summer 2012 

for example through massive parallelism.  Neural 

networks are already being used for applications such 

as computer vision and speech understanding, and 

many algorithmic approaches are bio-inspired, but 

their biological basis is, for the most part, simplified 

from the more-detailed models used by 

neuroscientists.  Autonomous vehicles and other 

robotic applications are likely targets for such brain-

like systems. 

3. For the most part, computers still use the same basic 

architecture envisioned by John von Neumann in 

1945.  Hardware architectures based on the massive 

parallelism and adaptability of the brain may yield 

new computer architectures and micro-architectures 

that can be applied to problems currently intractable 

with conventional computing and networking 

architectures. 

The projects described in this paper generally cite all 

three of these reasons for their work. However, there are 

differences in emphasis. Projects focused on understanding 

the brain require a more-detailed and more 

computationally-expensive model of neuron behavior, 

while projects aimed at the second or third goal may use 

simpler models of neurons and their connections that may 

not behave exactly as biological neural networks behave. 

An additional advantage of attempts at whole brain 

emulation is to further understanding of prosthetic device 

construction. While the research in that general area has 

focused on the difficult task of providing connectivity 

between electronics and biological neurons (e.g. Berger [6]), 

more complex emulated neural networks might one day 

provide prosthetic devices that adapt to an individual's brain, 

providing functions missing due to surgery, accidents or 

congenital defects.  

1.2. Challenges to Brain Emulation 

In spite of the progress in many brain emulation efforts, 

there are major challenges that must still be addressed: 

 Neural complexity: In cortical neurons, synapses 

themselves vary widely, with ligand-gated and voltage-

gated channels, receptive to a variety of transmitters [7]. 

Action potentials arriving at the synapses create post-

synaptic potentials on the dendritic arbor that combine 

in a number of ways.  Complex dendritic 

computations affect the probability and frequency of 

neural firing.  These computations include linear, 

sublinear, and superlinear additions along with 

generation of dendritic spikes, and inhibitory 

computations that shunt internal cell voltage to resting 

potentials or decrease the potential, essentially 

subtracting voltage.  Furthermore, some 

neuroscientists show evidence that the location of each 

synapse in the dendritic arbor is an important 

component of the dendritic computation [8], essential 

to their neural behavior, and there is growing consensus 

among neuroscientists that aspects of dendritic 

computation contribute significantly to cortical 

functioning. Further, some propagation of potentials 

and other signaling is in the reverse direction, affecting 

first-order neural behavior (for example, see the reset 

mechanism affecting dendritic spiking plasticity) [9, 

10]. The extent of the detailed modeling of dendritic 

computations and spiking necessary for brain 

emulation is an open question.  

 Scale: A massive system is required to emulate the 

brain: none of the projects we discuss have come close 

to this scale at present.  The largest supercomputers 

and computer clusters today have thousands of 

processors, while the human cortex has tens of billions 

of neurons and a quadrillion synapses.  We are a long 

way from cortex scale, even if one computer processor 

could emulate thousands of neurons, and, as we will 

see, it is unclear whether that emulation would be 

sufficiently accurate. 

 Interconnectivity: Emulation of the cortex in hardware 

represents a massive “wiring” problem.  Each synapse 

represents a distinct input to a neuron, and each 

postsynaptic neuron shares synapses with an average of 

10,000 (and as many as 100,000) other presynaptic 

neurons. Similarly, the axon emerging from each 

neuronal cell body fans out to an average of 10,000 

destinations.   Thus each neuron has, on average, 

10,000 inputs and 10,000 outputs. If the connections 

were mostly local, the wiring would not be so 

complicated; however, recent research by Bassett et al 

[11] derives a Rent exponent for the biological brain 

that could be used to compute the quantity of 

connections emerging from a volume of brain tissue.  

Early indications are that this Rent exponent is 

sufficiently large (many distal connections) so as to 

cause connectivity problems with conventional CMOS 

electronics. 

 Plasticity: It is generally accepted that an emulated 

brain with static neural connections and neural 

behavior would not produce intelligence. Synapses 

must be “plastic”: the strength of the excitatory or 

inhibitory connection must change with learning, and 

neurons must also be able to create new synapses and 

hence new connections during the learning process.  

Research on the mechanisms by which neurons learn, 

make and break connections, and possess memory is 

ongoing, with hypotheses and supporting data 

appearing frequently. These studies have led to a basic 

understanding of synaptic and structural plasticity.  In 

the last decade, attention has been given to the role of 

glial cells in neural behavior, glial cells being much 

more numerous in the brain than neurons.  The role of 

astrocytes, a type of glial cell, in learning and memory 

is being actively investigated[12] and neuromorphic 

circuits constructed [13]. 

 Power consumption: A final, indirect problem is the 

power consumed by a brain emulation with 50 billion 

neurons and 500 trillion connections, and the 

dissipation of the associated heat generated.  The 

human brain evolved to use very little power, an 

estimated 25 watts.  We do not have computing 
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technology anywhere near this power efficiency, 

although nanotechnology and ultra-low power design 

offer promise. 

We will examine how each major project addresses these 

challenges.  Although the brain emulation field is in its 

infancy, progress has been made in a very short time. 

1.3 Other Surveys 

Other surveys of brain emulation are worth reference here.  

They provide a different perspective than ours. 

Sandberg and Bostrom [14] prove an excellent survey of 

the overall issues in brain emulation, although they do little 

discussion of actual brain emulation projects.  They cover 

different levels of emulation, different neural models, 

computational requirements of emulation, and brain 

mapping technologies, 

De Garis, Shuo, Goertzel, and Ruiting [15] provide the 

most similar survey to ours, covering half of the projects 

mentioned here.  This is a good reference for another 

perspective on these projects.  It is part one of a two-part 

survey.  The second part, written by Goertzel, Lian, Arel, 

de Garis, and Chen [16], surveys higher-level brain models 

aimed at producing intelligent behavior, inspired by human 

intelligence but not based on emulation of neural networks; 

this work is closer to classical AI. 

2. Background 

There are three key components to any artificial neural 

network: 

1. Neurons: the models used to emulate the computation 

and firing behavior of biological neurons, and the 

technology used for the emulation, 

2. Connectivity: the models and technologies used for 

the synaptic connections between neurons, and 

3. Plasticity: the models and technologies to create 

changes in the behavior of neurons and their synapses. 

In this section, we provide some background on these 

models and technologies.  This background will provide a 

basis for understanding brain emulation projects in the 

remainder of the paper. 

2.1 Modeling Neurons 

A variety of neural models are used in the projects we 

describe.   

Most neural modeling involves the ion channels 

responsible for spike generation at the axon hillock, or the 

synapse, where spikes are transformed into post-synaptic 

potentials. The Hodgkin-Huxley [4] biological neural model 

discussed earlier, with Ca++, Na+, and K+ currents through 

ion channels, can require relatively expensive computations.  

Simulation is further complicated when one takes into 

account the 3-dimensional layout of axons and dendrites, 

requiring spatiotemporal integration.  Cable theory and 

compartmental models have been used to account for the 

latter. Various improvements have been proposed to 

simplify computation while maintaining some level of 

faithfulness to biological neurons.  A survey of this work 

is beyond the scope of this paper; the interested reader is 

referred to [17]. 

Some of the projects we discuss use a very simple model 

of neuronal behavior.  The simplest model is an integrate-

and-fire “point neuron,” summing weighted input from 

synapses and comparing the resulting sum to a threshold, 

arriving at a binary decision whether and when to generate 

an output spike.  This model is commonly extended to 

include a decaying charge, as a “leaky integrate and fire” 

neuron.  The model can also be enhanced in other ways: 

non-linear summation, time-dependent thresholds, 

programmable delays in the delivery of spikes, and other 

variations.  The point neuron models require only modest 

computation and hardware, in contrast to biological ion-

channel models with spatiotemporal integration. 

Izhikevich [18] provides a good recent survey of hybrid 

spiking neural models, comparing their computational costs 

and their ability to handle a range of 20 different spiking 

behaviors observed in neurons in vivo.  Each model is 

represented by a set of ordinary differential equations that 

define the change in neuron membrane voltage over time, 

and the computational cost is measured by the number of 

floating point operations required in each time-step in the 

simulation. Izhikevich assumes 1 millisecond time steps in 

his paper. The Hodgkin-Huxley model is the most 

expensive one he considers, requiring about 1200 floating-

point operations per millisecond. 

Izhikevich concludes by advocating an enhanced leaky-

integrate-and-fire model for neurons that is a compromise 

between computational cost and computational power, able 

to exhibit all 20 of the spiking waveforms he surveys.  The 

differential equations for his model are 

v' = .04 v
2
 + 5v + 140 – u + I,           (1) 

u' = a (bv – u),                (2) 

if v > 30 then reset v ← c and u ← u+d,       (3) 

where a, b, c, d, and I are parameters that define the 

neuron’s behavior, v is a variable representing the 

membrane potential in millivolts, and u is a variable 

representing membrane recovery. The parameter I 

represents the synaptic current resulting from the 

combination of post-synaptic potentials.  Each millisecond 

of simulation requires only 13 floating-point operations in 

this model, about 100 times fewer floating point operations 

than Hodgkin-Huxley, yet the model still retains the 

capability to exhibit all of the same spiking behaviors as 

Hodgkin-Huxley, given appropriate values of the 

parameters.  

More sophisticated neuron models, in contrast to the 

“point” models surveyed by Izhikevich, emulate 

components of the neuron separately. For example, 

synapses may be modeled separately from signal integration 

in the remainder of the neuron, followed by a spike-

generator modeling the axon hillock, or a neuron may be 

modeled as dozens of small compartments, applying ion-

migration equations to each compartment separately. 
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The fundamental feature of synapses is the voltage 

response over time of the neuron cell membrane to rapid 

input spikes that cause post-synaptic potentials to sum 

temporally and spatially, and that decay over time with time 

courses that vary depending on each individual synapse.  

The nonlinear sum of the excitatory post-synaptic potentials 

(EPSPs) might be offset by hyperpolarizing inhibitory post-

synaptic potentials (IPSPs) that essentially subtract 

potential, or might be entirely negated by shunting 

inhibitory synapses that return the cell membrane to resting 

potential, with location of each synapse playing a role in the 

computation. The Blue Brain project we discuss models 

these dendritic computations in more detail than the other 

major projects. 

As we shall see, the actual implementation of neuron 

models can be in software or in hardware, or a combination 

of the two. The purely-hardware implementations we 

discuss use neuromorphic analog circuits, as do the 

hardware portions of the hybrid implementations. We will 

discuss the pros and cons of these technology choices. 

2.2 Modeling Connections 

Modeling connections between neurons may seem trivial, 

given a hardware or software model of the neurons.  

However, one of the biggest challenges to brain emulation 

is the immense problem “wiring” the connections: the 

synapses, dendrites, and axons. 

The connection-wiring problem differs depending how 

neurons are modeled and implemented. As we will see in 

the next section, three different approaches have been used 

to implement neurons: 

1. Supercomputers, used to model neurons and their 

connections in software, 

2. Neuromorphic analog integrated circuits, with an 

array of special-purpose neural-modeling circuits on 

each chip, and 

3. Special-purpose digital integrated circuits, emulating 

neurons in software using many small CPUs 

networked together. 

Corresponding to these neuron emulation technologies, 

there are several different approaches to implementing 

synaptic connectivity between neurons.  In the 

supercomputer case, synaptic activity can be communicated 

through simple procedure calls or inter-process calls.  In 

the case of neuromorphic analog circuits, direct wiring 

between artificial neurons has been used locally.  However, 

since neurons contain many distinct synapses with differing 

effects on neural behavior, there is high connectivity fan-in 

for off-chip signals.  As a result of the high connectivity 

fan-in and fan-out, with current technologies, direct wiring 

has only been practical for connections between “nearby” 

analog neurons.  For longer connections in the analog case, 

and for all connections in the digital case, a networking 

approach has been required.   

The approaches used for this networking in the major 

projects examined here are almost all based on Mahowald's 

pioneering Address Event Representation (AER) 

architecture[ 19 ]. Networking and AER are based on a 

simplifying assumption that continuous connectivity 

between neurons is not necessary for an accurate emulation.  

Instead, they assume communication is necessary only 

when a neuron fires, generating an action potential.  The 

emulated neurons are networked together, generally with a 

topology of many nested networks, as on the Internet, to 

allow scaling.  When a neuron fires, network packets are 

sent out to all of the neurons that synapse upon it, notifying 

them of the spike.   

As on the Internet, each network node (a neuron in this 

case) is assigned a network-wide unique address, and some 

form of routing tables are required for the system to know 

what nodes and subnetworks a packet must go through to 

reach its destination. However, in typical network 

communication on the Internet, each network packet 

contains a source address, a destination address, and the 

data to be communicated.  In contrast, the AER approach 

includes only the source address (the “address event” of the 

neuron that spiked) in the packet.  A destination address is 

not used because it is not practical: every neuron would 

need to generate many thousands of packets each time it 

spiked. 

Instead, in the AER approach, all the synaptic 

connectivity information is stored in tables used by network 

routers.  Other information may be stored there as well, for 

example, the strength of the synaptic connection, and the 

desired delivery delay for the spike. 

There may or may not be data associated with each 

packet, as we will see. No data is necessary with a model 

that simply conveys a spike.  However, a more 

sophisticated model may deliver a spike rate or a waveform 

for spikes, through A/D conversion of the output of 

neuromorphic analog circuits, or could even send 

continuous waveforms, delivering packets whenever 

significant changes in voltage occurred. 

We will discuss the trade-offs in these connectivity 

approaches, as well as trade-offs in the neuron modeling, 

after describing the projects in more detail.  There are 

important differences in scalability, emulation speed, power 

consumption, and biological accuracy between the 

connectivity approaches. 

2.3 Modeling Plasticity 

A static model of the neurons fulfills only some of the 

requirements for an artificial brain.  The other key 

component is a model of plasticity: how neurons “learn” 

over time through changes in synaptic sensitivity and 

through generation of new synaptic connections.  Synaptic 

strength varies in several ways. Presynaptic strength 

(neurotransmitter availability) is up- or down-regulated (the 

synapses are facilitated or depressed) through a retrograde 

process that is not completely understood. Postsynaptic 

strength is up- or down-regulated through potentiation or 

depression, by the availability of receptors on the post-

synaptic side of the synapse that receive neurotransmitters 

released on the presynaptic side of the synapse. Post-

synaptic strength is modulated by several mechanisms 

including spike-timing-dependent plasticity (STDP), that 

increases receptor concentration (synaptic strength) when a 
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positive post-synaptic potential is followed by a spike 

generated in the axon hillock, and decreases synaptic 

strength when the increase in post-synaptic potential is 

either late with respect to the spiking activity or does not 

occur at all.  Parallel synapses can form at locations where 

existing synapses are highly active, and synapses can 

dissolve when activity is absent for some time.  Silent 

synapses that do not respond to presynaptic activity can be 

awakened via messenger proteins expressed by the neuron's 

RNA, and new synapses can form over time, possibly due 

to other protein expression. While the post-synaptic synapse 

formation is believed usually to occur initially with spine 

growth as a precursor, followed by the presynaptic growth, 

there is some evidence that pre-synaptic formation can 

occur at the same time, or earlier.   

The projects we describe assume a limited form of 

learning, long-term potentiation, and STDP in the brain. 

They generally implement at the least some form of basic 

Hebbian learning [20], i.e., when an axon synapsing on a 

post-synaptic neuron repeatedly takes part in firing the 

neuron, the synapses on that axon are strengthened. More-

complex and more-specific models of plasticity (e.g. STDP) 

are implemented in some cases.  Various more-

sophisticated forms of synaptic plasticity have been 

proposed and studied in neuropsychology.  For example, 

Allport [21] posits that repeated patterns of activity become 

an auto-associated engram, exciting neurons that are part of 

the pattern, and inhibiting those that are not.  And finally, 

in addition to strengthening and weakening of synapses, 

there is evidence in biological neurons, even in mature 

brains, for the growth of entirely new dendritic spines, 

dendrites and synapses (e.g., [22, 23]). 

Relatively little is written about the plasticity and 

learning processes used in the projects we cover.  However, 

the learning mechanism is generally encoded in software 

that can easily be changed, so the projects do offer an 

opportunity to experiment with various models of learning. 

3. Project Summaries 

Many projects around the world have aimed at emulating 

neural networks.
2
 In this paper we have attempted to limit 

our scope to the most advanced and pragmatic approaches 

to large-scale neural emulation. In particular, we only 

consider projects intended to scale to millions of neurons, 

and projects that have fabricated and tested their designs, at 

least on a small scale, with currently available technologies.  

Given this scope, although there are innovative, successful 

projects with more limited scope, due to space and time 

limitations, we elected to focus on six projects in this paper 

that have the most ambitious scope and the most 

demonstrable results: 

1. The SpiNNaker [24] project at Manchester University 

in the U.K.,  

                                                 
2 This field is rapidly evolving, so our descriptions reflect a single 

point in time for each project represented.  The reader is cautioned to 

consult the latest publications for the most accurate information. 

2. The Blue Brain[25] project at École Polytechnique 

Fédérale de Lausanne (EPFL) in Switzerland,  

3. The C2S2 SyNAPSE[ 26 , 27 ] project at IBM 

Research in California, 

4. The FACETS [28] project at Heidelberg University in 

Germany, 

5. The Neurogrid [29] project at Stanford University in 

California, and 

6. The IFAT [30, 31] and NeuroDyn [32] projects at the 

University of California at San Diego. 

In the following subsections we look at each of these 

projects in more detail.  In the last subsection, we discuss a 

few related projects, with a focus on emerging technologies. 

3.1 SpiNNaker 

The SpiNNaker project at Manchester University is based 

on fabricating many small CPUs on a chip, the cores 

communicating through a network on-chip and through a 

network between chips. The principal investigator, Steve 

Furber, was a co-designer of the ARM 32-bit RISC 

microprocessor, and a simplified ARM 968 processor is 

used for the CPUs on the SpiNNaker chips.  Each CPU is 

designed to simulate about 1,000 neurons, communicating 

spike events to other CPUs through packets on the network. 

The SpiNNaker chip is designed to include 

 18 low-power ARM CPUs, each with about 100KB of 

local RAM used to store its programming and data, 

 128MB of RAM shared by all 18 CPUs through a 

DMA controller, used to store synaptic weights and 

other information, and 

 An on-chip network and packet router that connects 

the 18 CPUs and also connects to 6 adjacent 

SpiNNaker chips, to reach other CPUs. 

The routing of packets in SpiNNaker is carefully designed 

to balance complexity and bandwidth.  AER packets are 

used, as with most of the other projects described here.  

Routing tables stored in a content-addressable memory tell 

the router which packets must be routed to which CPUs, 

whether off-chip or on-chip.  The SpiNNaker chips are 

connected to adjacent SpiNNaker chips in a 2-dimensional 

toroid mesh network; each chip has 6 network ports, 

connected to adjacent chips.  The router need not know the 

eventual destination(s) of a packet, it only needs to know 

which port(s) to send it to. Routing tables are built and 

maintained by a separate (programmable) background 

process responsible for connectivity, plasticity, and learning 

[33].  

SpiNNaker is initially using a simple algorithm for 

neurons based on Eugene Izhikevich’s point neuron model 

34].  For the purposes of this paper, we analyze SpiNNaker 

based on that model, although their software-based 

architecture could support a variety of more sophisticated 

neural models.  

Their point neuron algorithm is programmed into the 

local memory of each of the SpiNNaker CPUs.  Post-

synaptic weights for synapses are stored in the SpiNNaker 

chip’s shared memory; the algorithm fetches the 



Natural Intelligence: the INNS Magazine                   22                   Volume 1, Issue 3, Spring/Summer 2012 

corresponding weight into local CPU memory whenever a 

spike arrives at one of its “synapses,” and recomputes 

neuron action potentials at 1ms simulation intervals, based 

on Izhikevich’s equations. 16-bit fixed-point arithmetic is 

used for most of the computation, to avoid the need for a 

floating-point unit and to reduce computation and space 

costs. 

Because spike delivery time in SpiNNaker is designed to 

be faster than a biological brain (assuming the network and 

routing delays are adequately controlled), SpiNNaker 

allows a delay of up to 15ms to be inserted in delivery of 

AER packets, in order to simulate longer axons.  The goal 

is to allow the globally asynchronous, locally synchronous 

design to operate similarly to a biological brain possessing 

the same neural network. 

The maximum number of SpiNNaker chips supported by 

the packet-address structure is 2
16

 (65,000 chips).  About a 

billion neurons could be simulated in this configuration, if 

the physical chip placement, network, and other constraints 

do not limit scalability. The group has done some limited 

simulations to determine when the network and CPUs 

become saturated [35].  We will further discuss scalability 

in the last section. 

Work continues on the SpiNNaker project.  It is 

expected that a full 65,000-chip configuration with 18-CPU 

chips will be built some time in 2012. 

3.2 Blue Brain 

The Blue Brain Project at EPFL in Switzerland uses an 

IBM Blue Gene supercomputer with 8,000 CPUs to 

simulate neurons and STDP in software.  Henry Markram 

at EPFL’s Brain Mind Institute is the principal investigator. 

The Blue Brain group constructed a 10,000 neuron model 

of a neocortical column from the somatosensory cortex of a 

2-week-old rat, and simulated it on the Blue Gene 

supercomputer.  The simulation ran about ten times slower 

than biological neurons.   

The modeled cortical column is about .5mm in diameter 

and about 2.5mm in height. The model is not a map of real 

connections in any particular rat; the connections are 

randomly derived based on the percentage connectivity of 

neurons of different types in different layers of rat cortical 

columns.  However, the model does attempt to account for 

the 3D morphology of the neurons and cortical column, 

using about 1 billion triangular compartments for the mesh 

of 10,000 neurons.  A multi-processor adaptation of the 

NEURON simulation software [36] was run at this fine 

grain using Hodgkin-Huxley equations, resulting in 

gigabytes of data for each compartment, and presumably a 

high level of bio-realism.  Timing, e.g. propagation delays 

along the simulated compartments of an axon, are 

incorporated into the simulation.  Synaptic learning 

algorithms are also introduced, to provide plasticity.  A 

visual representation of parts of the cortical column can be 

displayed for the simulation, allowing researchers to focus 

on particular parts or phases of the simulation in more detail. 

The Blue Brain project is unusual in its goal to simulate 

the ion channels and processes of neurons at this fine-grain 

compartmental level.  Had the project simply used a “point 

neuron” model integrating incoming spikes, the simulation 

could have delivered orders of magnitude higher 

performance, but Markram opted for a higher level of bio-

realism. 

Of course, software emulation of neurons on large 

computers, including the bio-realistic fine-grain 

compartmentalized emulation used in Blue Brain, has been 

used widely in computational neuroscience laboratories; we 

mention some other projects at the end of this section.  

However, we chose to include the Blue Brain project in this 

paper as the best example of this approach, because of its 

combination of large scale and bio-realism. 

Work on the Blue Brain project is now progressing to a 

second phase of work.  The team cites two new directions: 

incorporating molecular level processes, and simulating 

more of the brain through additional parallelism. No 

publications are yet available on this work, to our 

knowledge.   

3.3 C2S2 

Dharmendra Modha’s Cognitive Computing Group at IBM 

Alamaden Research Lab received funding in 2008 from 

DARPA’s SyNAPSE initiative with their proposal 

“Cognitive Computing via Synaptronics and 

Supercomputing (C2S2).”  Modha has in turn funded 

professors from 5 universities (Cornell, Columbia, Stanford, 

Wisconsin Madison, and UC Merced) as part of their 

project, bringing in expertise in neuroscience, psychology, 

VLSI, and nanotechnology.  We will refer to Modha’s 

project as “C2S2”. 

Modha’s team studied data on biological brains to work 

toward a “connectome” database of neural connectivity [37], 

using experimental data from diffusion tensor imaging (DTI) 

and other techniques. They created a massively parallel 

cortical simulator called C2, which was initially used at the 

scale of a rat cortex, and more recently at the scale of a cat 

cortex, running on IBM’s Dawn Blue Gene/P 

supercomputer, with 147,456 CPUs and 144TB of main 

memory.  In the latter case C2 simulated 1.6B cortical 

neurons and 9 trillion synapses, using experimentally 

measured thalamo-cortical connectivity.  The simulations 

incorporated STDP and controlled axon delays. 

The C2 simulation used a much simpler model of 

neurons than the Blue Brain, with single-compartment 

spiking Iszhikevich-type neurons.  As with the Blue Brain, 

the connectome used did not match the actual connectome 

of any particular biological brain: it is an approximation 

based on the tools currently available.  However, Modha 

points out that much can be learned even with these 

approximations.  He reported oscillations in neural firing 

patterns seen over large areas of the simulated cortex at the 

alpha and gamma frequencies seen in mammal brains, and 

groups of neurons exhibited population-specific response 

latencies matching those in the human cortex. 

More recently, Modha has published papers on new 

“cognitive computing chips” [27], suggesting that IBM 

research will now turn to hardware for brain emulation.  

The prototype chip emulates 256 neurons, using a crossbar 

connecting 1024 input axons to the 256 neurons with 
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weighted synapses at the junctions. Variations of the chip 

have been built with 1-bit and 4-bit synapse weights stored 

in SRAM.  Another was built with low leakage to reduce 

power consumption.   

Cross-chip spikes are conveyed asynchronously via AER 

networking, while the chips themselves operate 

synchronously.  Synapses are simulated using the 

Izhikevich leaky integrate-and-fire model.  The results are 

identical to the same equations simulated in software, but 

all 256 neurons on the chip update their membrane voltage 

in parallel, at 1ms intervals.  The details of the AER 

networking are not specified, so it is not possible to 

speculate on how that will scale at this time. 

3.4 FACETS and BrainscaleS 

The FACETS project (Fast Analog Computing with 

Emergent Transient States) is a consortium of 15 groups in 

7 European countries, led by professors Johannes 

Schemmel and Karlheinz Meier of the Electronic Visions 

lab at the University of Heidelberg.  

In their early work, the “Spikey” neuromorphic ASIC 

chip was developed. A Spikey chip hosts a total of 128K 

synapses; it could simulate, for example, 8 neurons with 

16K inputs, or 512 neurons with 256 inputs. The goal was 

to simulate analog neuron waveforms analogous to 

biological neurons on the same input.   

The Spikey neurons communicate with each other 

digitally, although the neuron circuit is analog.  Digital 

action potentials are routed to synapse drivers, that convert 

them to voltage pulses that, in turn, control synaptic 

conductance. The synapse drivers also implement STDP; 

synaptic weight storage is implemented as static RAM.  

Synaptic conductance is modulated by an exponential onset 

and decay.  

Whenever an analog neuron circuit reaches an action 

potential, digital monitoring logic generates a spike event 

with the event time and the address of the spiking neuron. 

This event is transmitted on a network to multiple 

destination neurons that need not be on the same Spikey 

chip. About 1/3 of the Spikey chip is digital control logic 

that implements the digital communication between 

neurons. 16 Spikey chips can be operated on a custom 

backplane that implements high-speed digital 

communication between the chips with a fixed and 

guaranteed latency.   

The Spikey chip outputs, inputs, circuit parameters, and 

neuron interconnections can be monitored and controlled 

from software running on a host computer.  Selected 

neurons can then be stimulated with experimental spikes, 

and neuron outputs can be recorded. 

More recently, the FACETS researchers developed the 

HICANN (High Input Count Analog Neural Network) chip 

and “wafer scale integration” to achieve higher connectivity 

between simulated neurons.  HICANN bears some 

resemblance to Spikey in that neural emulation is analog, 

with digital circuits for communication and STDP.  

However, there are a number of differences.  Instead of 

placing each HICANN chip in a separate package as with 

Spikey, the entire multi-chip wafer is enclosed in a single 

sealed package with horizontal and vertical “Layer 1” 

channels that connect the HICANN chips within and 

between reticles on a wafer.  A total of 352 HICANN chips 

can be interconnected on the multi-chip wafer, producing 

180,000 neurons with a total of 40 million synapses.   

Synapses are implemented with groups of DenMem 

(Dendrite Membrane) circuits. A hybrid analog/digital 

solution is used for the synapses, and a hybrid of address-

encoding and separate signal lines is used for 

communication.  Each DenMem can receive as many as 

224 pre-synaptic inputs based on a 6-bit address sent via a 

Layer 1 channel. The synaptic weight is represented in a 4-

bit SRAM with a 4-bit DAC. The post-synaptic signal is 

encoded as a current pulse proportional to the synapse 

weight, and can be excitatory or inhibitory. Neuron circuits 

integrate the DenMem signals.  A digital control circuit 

implements STDP based on temporal correlation between 

pre- and post-synaptic signals, updating the synaptic weight. 

A packet-based “Layer 2” routing protocol is used to 

communicate between wafers, using pads on the HICANN 

chips that connect them to the PCB.  Layer 2 channels 

provide 176GB/sec from the wafer to PCB, allowing 44 

billion events/second to be communicated between wafers.  

The Layer 2 wafer-to-wafer channels are handled by 

FPGAs and OTS switches on the PCB with 1-10 Gbit 

Ethernet links. 

The HICANN chips implement an adaptive exponential 

integrate and fire (AdExp) model of neurons.  This model 

is somewhat more sophisticated than the standard integrate 

and fire model used in SpiNNaker, but less sophisticated 

(and less computational expensive) than Blue Brain’s multi-

compartmental Hodgkins-Huxley-based model.  The 

FACETS group is now investigating more sophisticated 

models. 

The FACETS neural networks are described in PyNN, a 

simulator-independent language maintained by 

neuralensemble.org.  PyNN is Python-based and includes 

operations to create populations of neurons, set their 

parameter values, inject current, and record spike times.  

PyNN can be run on a simulator such as NEURON, or can 

be used on the FACETS host computer to initialize and 

control the chips.  In addition, a neuralensemble.org 

framework called NeuroTools has been developed to assist 

in the execution of experiments, and the storage and 

analysis of results. In recent work [38], software has been 

developed to automatically translate a PyNN design into a 

hardware implementation in several stages, optimizing the 

physical placement of the neural components and 

connections on HICANN chips.   

A follow-on to the FACETS project, BrainscaleS [39], 

was started in 2011.  To date, only high-level directions 

have been published on BrainscaleS. Two key goals of 

BrainscaleS are in-vivo recording of biological neural 

networks and the construction of synthesized cortical 

networks with similar behavior.  The focus is on perceptual 

systems.  The BrainScaleS project is establishing close 

links with the Blue Brain project and with Brain-i-Nets [40], 

a consortium producing a set of learning rules based on 

synaptic plasticity and network reorganization.  
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3.5 Neurogrid 

The Neurogrid project at Kwabena Boahen’s “Brains in 

Silicon” lab at Stanford University uses programmable 

analog “neurocore” chips.  Each 12x14 mm
2
 CMOS chip 

can emulate over 65,000 neurons, and 16 chips are 

assembled on a circuit board to emulate over a million 

neurons. The system is built and functional.  

Neurogrid uses a two-level simulation model for neurons, 

in contrast to the point neuron model used in SpiNNaker, 

and in contrast to the thousands of compartments used in 

Blue Brain’s simulation.  Neurogrid uses this approach as a 

compromise to provide reasonable accuracy without 

excessive complexity. A quadratic integrate-and-fire model 

is used for the somatic compartment. Dendritic 

compartments are modeled with up to four Hodgkin-Huxley 

channels.  Back-propagation of spikes from somatic to 

dendritic compartments are supported. 

Neurogrid uses local analog wiring to minimize the need 

for digitization for on-chip communication.  Spikes rather 

than voltage levels are propagated to destination synapses. 

To simplify circuitry, a single synapse circuit models a 

neuron’s entire synapse population of a particular type, and 

each of these circuits must be one of four different types.  

The synapse circuit computes the net postsynaptic 

conductance for that entire population from the input spikes 

received. Although this approach limits the ability to model 

varying synaptic strength, and it does not model synaptic 

plasticity, it greatly reduces circuit complexity and size. 

Like SpiNNaker, Neurogrid uses an AER packet network 

to communicate between-chip spikes.  Unlike SpiNNaker’s 

grid organization, Neurogrid’s chips are interconnected in a 

binary tree with links supporting about 80M spikes/second 

(this is a change from earlier work [41] in which Boahen 

used a grid network). Routing information is stored in RAM 

in each router.  This AER-based networking is referred to 

as “softwire” connections. 

To reduce communication overhead, a single inter-chip 

spike can target multiple neurons on the destination chip.  

The postsynaptic input triggered in a target neuron can be 

propagated to neighboring neurons with a programmable 

space-constant decay.  This requires only nearest-neighbor 

connections: the synaptic potentials superimpose on a single 

resistive network to produce the net input delivered to each 

neuron.  A single cross-chip spike can thus reach a hundred 

neurons.  This is analogous to cortical axons that travel for 

some distance and then connect to a number of neurons in 

local patch arbors in another cortical column. 

Unlike FACETS, which is designed to run orders of 

magnitude faster than biological neurons, the Neurogrid 

neuron array is designed to run in real-time.  This means 

that a single AER link can easily service all of the cross-

chip spikes for 65,000 neurons.  Furthermore, the on-chip 

analog connections can easily service their bandwidth, and 

it seems likely that the binary routing tree connecting the 16 

Neurogrid chips on a circuit board can easily support a 

million neurons. Thus, the only potential bottleneck for 

Neurogrid might be in routing between multiple boards in 

the future. 

Like FACETS, the neurocore chips are programmable.  

Each neurocore models the ion-channel behavior and 

synaptic connectivity of a particular neuron cell type or 

cortical layer.  The Neurogrid neuron circuit consists of 

about 300 transistors modeling the components of the cell, 

with a total of 61 graded and 18 binary programmable 

parameters.  Synapses can be excitatory, inhibitory, or 

shunting.  The Neurogrid group has demonstrated that their 

neurons can emulate a wide range of behaviors.  

The Neurogrid team has encouraged others to build on 

their work, teaching courses training students to build 

neural networks on their framework, and making their 

silicon compiler available to allow others to design 

neuromorphic systems for fabrication.  The descriptions 

are written in Python. 

3.6 IFAT and NeuroDyn 

Like the Neurogrid and FACETS projects, Gert 

Cauwenberghs and colleagues at the Institute for Neural 

Computation (INC) at the University of California at San 

Diego chose to use analog neuromorphic circuit chips to 

model neurons.  They have produced two different chips, 

IFAT and NeuroDyn, with different goals.  

The initial IFAT (Integrate and Fire Array Transceiver) 

chip, built in 2004, could emulate 2400 simple neurons.  A 

separate microcontroller on the same circuit board used 

analog-digital converters and an AER lookup table to 

deliver spikes to the IFAT chips based on a global “clock 

cycle.”  The INC group applied the IFAT chips to various 

applications, including Laplacian filters to isolate vertical 

edges on images, and spatiotemporal filters to process a 

spike train from an artificial retina, constructing velocity-

selective cells similar to those found in the medial-temporal 

cortex in the human brain, demonstrating brain processing.  

The latest version of the IFAT chip emulates 65,000 

neurons. The new system, called HiAER-IFAT 

(Hierarchical AER IFAT), uses a tree of routers for delivery 

of AER events [42]. The tree is built using Xilinx Spartan-6 

FPGAs connecting to the IFAT chips at the leaves. HiAER-

IFAT has been demonstrated with 250,000 neurons. Like 

SpiNNaker, all of the connectivity information is held in 

RAM in the routing tables of the intermediate nodes, in this 

case the non-leaf nodes of a hierarchy.  Unlike SpiNNaker, 

the maximum number of routing “hops” is logarithmic in 

the number of neurons.  However, it is possible that the 

HiAER-IFAT routers in the highest level of the hierarchy 

could become overloaded if there is insufficient locality of 

reference.  

The INC group has also designed a “NeuroDyn” chip, 

which is the most sophisticated of all of the neuromorphic 

chips discussed in this paper, in terms of bio-realism and 

neuron emulation. Their neuron emulation supports 384 

parameters in 24 channel variables for a complex Hodgkin-

Huxley model. This level of emulation is important, for 

example, in examining the effects of neuromodulators, 

neurotoxins, and neurodegenerative diseases on ion channel 

kinetics.  However, NeuroDyn is not designed for large-

scale brain emulation: each chip emulates only 4 neurons 

and 12 synapses.  
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In contrast to IFAT and all the other projects that 

generate discrete spike events to be delivered by AER or 

other means, NeuroDyn emulates neural and synaptic 

dynamics on a continuous basis.  Matlab software on a 

workstation can monitor and control each neuron’s 

membrane potential and channel variables, and can adjust 

the 384 NeuroDyn emulation parameters to tune to any 

desired neuron behavior.  The parameters are stored on 

chip in digital registers. Experiments analogous to patch-

clamping biological neurons can be performed on 

NeuroDyn neurons through the software. 

3.7 Other projects 

Some other projects are worth mention because they 

address the challenges of an artificial brain in novel ways, 

although they have not yet progressed enough to include in 

our comparison at this time.  Additional projects are also 

surveyed in papers by de Garis et al [ 43 ], although a 

number of those projects are aimed at higher-level models 

of the brain, not the direct emulations surveyed here. 

The BioRC [44] project at the University of Southern 

California, led by the second co-author of this paper, is 

worth mention because of its radically different technology 

approach: artificial neurons and connections are proposed to 

be built from carbon nanotubes and other nanodevices like 

nanowires or graphene transistors. The long-term goal of 

the BioRC research project is the development of a 

technology and demonstration of electronic circuits that can 

lead to a synthetic cortex or to prosthetic devices.  

However, this project is still at an experimental stage, 

designing individual neurons and small neural networks, so 

we did not include it in our comparison.   

The BioRC project aims to meet all of the challenges 

discussed earlier in this paper, and the choice of emerging 

nanotechnologies is posited to be required in order to 

achieve all the challenges posed.  While experiments to 

date have involved carbon nanotube FET transistors, other 

nanotechnologies are under investigation.  Carbon 

nanotubes have some distinct advantages, not provoking an 

immune system reaction or corroding in contact with living 

tissue, as well as the obvious advantages of being extremely 

small (a few nm in diameter) and low power.  Finally 

nanotechnologies like carbon nanotubes offer a possible 

future advantage if they can be arranged and rearranged into 

3-D structures of transistors and circuits to support the 

connectivity and structural plasticity challenges faced when 

building an artificial brain. 

The BioRC neural circuits can be arranged to implement 

neurons with many variations in structure and behavior. The 

neural circuits are also designed with inputs that act as 

"control knobs" to vary neural behavior.  The control 

knobs can be used to create neurons with differing 

characteristics (e.g. spiking vs. bursting), or can be used as 

control inputs representing external influence on neural 

behavior (e.g. neurohormones).  A variety of synapse 

circuits, axon hillocks, and dendritic arbors have been 

designed to illustrate temporal and spatial summation, 

STDP, dendritic computations, dendritic spiking, dendritic 

plasticity, and spiking timing variations. A CMOS chip 

containing many of the circuits has been fabricated.  

Finally, a single synapse with a carbon nanotube transistor 

has been constructed and tested in collaboration with 

Chongwu Zhou [45].  

BioRC's neural models, especially the synaptic models, 

are more complex than most of the major projects, with the 

exception of Markram's Blue Brain.  Interconnections in 

existing CMOS technology are believed to be the primary 

challenge to whole brain emulation for this project, 

although newer flip-chip technologies can ameliorate 

connectivity problems significantly.  Self assembly with 

nanodevice transistors, like that performed by Patwardhan 

et al. [46] shows promise for future whole brain emulation 

with analog circuits.   

Memristors are another nanotechnology being 

implemented in neural circuits, with the pioneering work at 

HP, where the first fabricated memristors were invented 

[47].  

In addition, various other research groups have made 

progress towards more advanced neural simulations: 

 Eugene Izhikevich, CEO of the Brain Corporation, 

together with Nobel prize winner Gerald Edelman, 

simulated a million spiking neurons and 500 million 

synapses tuned to approximate recorded in-vitro rat 

cortex neural responses [ 48 ].  Their neural model 

was slightly more sophisticated than the one used in 

Modha’s simulations, separating the soma from 

multiple dendritic compartments.  Like Modha, they 

found that waves and rhythms emerged.  They also 

found their simulation highly sensitive to the addition 

or removal of a single neural spike. 

 Giacomo Indiveri’s Neuromorphic Cognitive Systems 

Lab at the Institute of Neuroinformatics at the 

University of Zurich have built biomimetic hybrid 

analog / digital CMOS VLSI chips for specific 

functions such as real-time sound recognition and 

optic flow sensors, using quite detailed neuronal 

models [49]. 

 The Computational Neurobiology Lab at Salk 

Institute as well as the INC lab at UCSD perform 

detailed software neuron simulation and advanced 

recording of biological brains, for example to model 

learning [50]. The MCell project simulates detailed 

diffusion machinery and other biomolecular processes 

at synapses. 

 Farquhar and Hasler at Georgia Tech describe a 

programmable neural array [51],with analog neural 

circuits. 

4. Analysis and Comparisons 

Each of the projects we discuss address some challenges to 

artificial brain construction directly.  However, none of the 

projects masters all of them.  In this section of our paper, 

we examine four challenges: 

1. Bio-realism of the neural computation model, i.e., the 

project’s ability to emulate the behavior of biological 

neurons, 
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2. Bio-realism in neural connectivity, including fan-in 

and fan-out, 

3. Bio-realism in synaptic and structural plasticity, i.e., 

whether an artificial brain will learn and adapt like a 

biological brain, and 

4. Scalability of all the above, including power and 

space requirements, for tens of billions of neurons and 

hundreds of trillions of connections. 

4.1 Neuron Emulation 

The projects we focused on in this paper use three different 

technological approaches to the emulation of neurons.  

SpiNNaker uses a “neuroprocessor” approach, emulating 

neurons in software on loosely-coupled (networked) CPUs.  

Blue Brain and the original C2S2 work use a 

“neurosimulation” approach, emulating neurons in software 

on tightly-coupled (shared memory) CPUs in a 

supercomputer. FACETs, Neurogrid, and NeuroDyn use a 

“neuromorphic” approach, with analog circuitry for neural 

computations.  

Independent of the technological approach, the projects 

differ substantially in the level of bio-realism and 

computational sophistication in their emulation of neurons 

and synapses: 

1. The simplest approach is the point neuron model, as 

recommended by Izhikevich, in which a neuron’s 

synaptic inputs enter into differential equations to 

compute the output of the neuron over discrete time 

intervals.  SpiNNaker and the C2S2 work have used 

such a model. 

2. A point neuron model implemented in analog 

circuitry is potentially more sophisticated, depending 

on the complexity of the circuit, since the circuit can 

perform continuous real-time integration of signals in 

contrast to the discrete-time intervals used in software 

emulations.  The NeuroDyn chip implements a 

particularly sophisticated point neuron, with hundreds 

of parameters. 

3. A two-level analog model such as Neurogrid’s two 

compartments, or the FACETs HICANN chip’s 

separate dendritic membrane circuits, allows more 

sophisticated neural emulations, depending on the 

complexity of the compartment emulations.  

4. The most bio-realistic approach among the projects is 

Blue Brain’s fully compartmentalized model of the 

neuron, representing a biological neuron as hundreds 

of independent compartments, each producing an 

output based on adjacent ion channels and regions.  

These result in an integrated neural output at the axon 

hillock compartment, but also allow for local 

dendritic spikes and back-propagation of action 

potentials to dendrites. Blue Brain uses 

computationally expensive Hodgkin-Huxley 

equations to compute the potential bio-realistically in 

each compartment. 

The neuromorphic approach avoids the substantial 

computational overhead of software simulation, and may 

produce a more biologically-accurate result in less time 

than point neuron software simulations using Izhikevich’s 

equations.  On the other hand, while neuromorphic analog 

circuits can produce results many orders of magnitude 

faster than real neurons or a software simulation like Blue 

Brain, there is still a remaining question about whether their 

fixed neuronal structure adequately captures biological 

neuronal behavior. 

Because the connectome used in the Blue Brain 

simulations is not identical to any biological brain, it is 

difficult to observe identifiable functional behavior from the 

cortical column they simulate, except in very abstract ways.  

Since none of the systems can be directly compared to 

biological brains, it remains an open question what neural 

complexity is required to demonstrate biological behavior.  

Keep in mind that biological neurons are slow in 

comparison to current electronics, differing by at least a 

factor of 10
6
 in speed, if we compare the speed of a simple 

logic gate with the speed of a neuron.  However, it takes 

many machine cycles and tens of thousands of gates 

executing software instructions in order to simulate a 

neuron. There is also significant overhead due to 

communication between processors, further slowing 

execution.  At one point, the Blue Brain neurons were 

about ten times slower than biological neurons in 

simulations, and used about 8000 processors to simulate 

10,000 neurons in a cortical column of a rat. This highlights 

the need for massive parallelism, and the performance 

degradation when simulation is performed on serial 

processors.   

Note that the artificial brain projects can be grouped into 

two overall categories: simulating neurons with digital 

hardware (Blue Brain, C2S2, and SpiNNaker), or 

simulating neurons with in analog hardware (FACETs, 

NeuroDyn, and Neurogrid). Most projects seem to rest at 

the extremes of processing variations: massive 

multiprocessor software simulations or analog 

neuromorphic circuit emulations. One could speculate that 

special-purpose digital hardware built with FPGAs or as 

ASICs would explode in size and complexity due to the 

non-linear additions and multiplications occurring in the 

dendritic arbor, forcing digital implementations that 

implement the dendritic arbor for each neuron to be 

significantly simplified over software implementations.  

Because of the relative simplicity of analog computations 

compared to digital computations, most hardware 

approaches have exploited the ability to manipulate currents 

and voltages by means of analog electronics, inspired by the 

seminal work of Misha Mahowald [19] and Carver Mead 

[ 52 ].  While the analog computations are inexact and 

subject to fabrication and environmental variations, 

biological neural networks exhibit variability in behavior as 

well, and still perform well under differing circumstances.   

The troubling thought is that there are no definitive 

results to indicate how detailed the model of the brain and 

neurons must be in order to demonstrate intelligence.  Non-

linear dendritic computations and dendritic spiking are 

shown to occur in the biological brain (e.g., by Polsky [7]), 

but perhaps such biological structures could be supplanted 

with more intricate connectivity between simpler neuronal 
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structures in an artificial brain, much as the analogy 

between Turing machines and modern supercomputers, 

with elaborate programming schemes in a Turing machine 

replacing software running on a more-complicated 

execution engine.  Thus, while some attempts are less bio-

realistic in their models of neuronal computations, they 

might be able to demonstrate equivalent intelligence with 

added sophistication of connectivity over other models.   

4.2 Synaptic Connectivity 

As with the neuron models, there are a number of technical 

approaches to modeling synaptic connectivity.  Blue Brain 

uses software calls.  The others generally use a digital 

networking approach, but Neurogrid, FACETS, NeuroDyn, 

and IFAT use direct wiring for short distances. 

As with neuron emulation, and independent of technical 

approach, the important differences in connectivity 

approaches are the resulting bio-realism and capabilities: 

1. Delivered content: the synaptic connectivity model 

may simply deliver a spike as an event to another 

neuron, the entire spike voltage waveform may be 

delivered, or there may be continuous connection, at 

least at some small time granularity, so that sub-

threshold voltages can affect a synapse. There are key 

questions for neuroscience to answer, here, before we 

can judge what must be delivered.  There is some 

evidence that implementing the spikes as events alone 

is adequate, and this would vastly simplify the circuits 

and technology to emulate synaptic connectivity, but 

there is dissention concerning this assumption. 

2. Connection distance: the projects differ in their 

ability to deliver output to distant vs. nearby neuron 

synapses, or in the properties of their short vs. long 

connections, e.g. with direct connections versus AER 

packets. 

3. Connection delays: biological axon/synapse 

connections differ in their time delays, particularly for 

axons and dendrites that synapse over longer 

distances, or through the thalamus.  A model that 

treats all connections the same cannot model this.  

However, it may be possible to insert delays to 

simulate longer connections in all of the projects, and 

even with direct wiring, delay circuits could be 

inserted.  AER packet delays can be unpredictable, 

but a variable delay can be inserted to achieve any 

desired delivery time, if AER delays can be 

adequately bounded.  Of course, tracking and 

correcting delivery times add complexity to those 

systems.   

4. Fan-in/fan-out: There are limitations in the fan-in and 

fan-out allowed by all the technologies, and there will 

be bigger delays with larger fan-in and fan-out, with 

either direct connections or with AER packet delivery. 

We will examine connectivity scalability in Section 

4.4. 

5. Timing and other issues: A final challenge related to 

connectivity is the neural sensitivity to spike-arrival 

timing at the synapse.  Late spikes result in synaptic 

depression in biological synapses.  Arrival of spikes 

in a predictable manner supports rate coding, believed 

to be a mechanism that conveys more information 

than a more-binary interpretation of spikes with 

spike/no-spike processing. Thus, connecting the brain 

physically is a major challenge, but predictable spike-

arrival timing further complicates the connectivity 

problem enormously. In addition, communication 

between proximal neurons occurs via astrocytes as 

well and is postulated to occur via electromagnetic 

waves and other signals, further complicating the 

wiring. 

An architecture with synchronous delivery of spikes 

introduces a timing issue.   For example, connectivity in 

the original IFAT chip was based on delivering spikes on 

global clock cycle intervals, with neurons computing their 

output state on each cycle, while HiAER-IFAT provides 

asynchronous operation. 

Continuous analog connectivity works well for short 

distances, as demonstrated by a number of the projects, but 

direct wiring to all neurons at the scale of an artificial brain 

requires massive connectivity not yet possible in modern 

digital circuits.  The brain does seem to follow a Rent's 

rule [11] just as digital systems do, in that there is a 

relationship between the number of connections emerging 

from a volume of brain tissue compared to the size of the 

brain tissue enclosed. However, all modern digital systems 

exploit some form of multiplexing for communications at 

any distance.  An artificial brain that did not multiplex 

connections, sharing wires between distant parts of the 

brain, would likely be unable to support 10,000 connections 

per neuron using current technologies. 

Thus, all of the projects have a challenge with the brain’s 

dense synapse fan-in and axon fan-out.  To date, the 

solution of choice is AER packet networking.  In the case 

of neuromorphic analog circuits (i.e., for all but SpiNNaker 

and Blue Brain), the use of AER requires some form of A/D 

and D/A conversion, or at least detection and delivery of a 

spike threshold voltage or spike event.  This is problematic, 

because the per-neuron circuitry required for conversion 

and for the routing and decoding logic for the very large 

address space (37 bits in the worst case) is much larger than 

the neuron emulation circuit itself, perhaps orders of 

magnitude larger.  Recent evidence points to significant 

connectivity outside each individual cortical column, 

implying many non-local connections [11]. 

In SpiNNaker’s “neuroprocessor” approach, there is no 

A/D conversion and the cost of the network routing logic is 

amortized over 1,000 emulated neurons per CPU.  

However, both SpiNNaker and the neuromorphic analog 

circuits face another problem with AER networking: 

routing packets in real-time from tens of billions of neurons 

is a major challenge.  We will examine networking 

scalability in Section 4.4. 

Another issue with AER networking is the timing of 

spikes.  Neurons adapt to early and late signals over time, 

and some signal timing tuning is performed by the 

oligodendrocytes that form a myelin sheath on the neurons' 
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axons.  In an emulated brain, with packet communication 

over a network, timing of emulated spikes originating from 

the same neuron is uncertain from second to second.  

However, proper synchronization can be achieved by 

inserting delays or inserting delays or reserving bandwidth 

[ 32, 53].   

4.3 Plasticity and Learning 

Plasticity and learning present one of the biggest challenges 

to artificial brain projects, partly because we don’t fully 

understand how these work in the brain, partly because such 

biological mechanisms are quite complex (e.g. Kandel's 

seminal research on memory [54]), and partly because our 

technologies are far less plastic than neural tissue.  We 

have experimental evidence for some basic synaptic 

plasticity mechanisms, but knowledge about plasticity, 

learning, and memory is far from complete.  Basic Hebbian 

learning could likely be the “tip of the iceberg”.  There is 

already evidence that Hebbian learning applies not just at 

the level of individual synapses, but to groups of interacting 

neurons, and many forms of learning may have evolved in 

the brain, or in different parts of the brain [22].  There is 

also evidence for neurons growing new dendrites and 

synapses to create new connections as well as changing the 

“weight” of existing synapses by increasing or decreasing 

the number of neurotransmitter vesicles or receptors for the 

neurotransmitters. Finally, learning can also occur through 

neurons dying or being created. 

The projects have generally not specified the mechanisms 

for learning in an artificial brain.  However, they generally 

explain how learning would be programmed, once a 

learning algorithm is specified.  There are three approaches: 

1. In an all-software solution like Blue Brain, the learning 

algorithm is of course implemented in software, which 

makes it easy to change.  Connections can added and 

removed, their synaptic strengths can be changed, new 

neurons can be created, and existing ones can be 

removed. 

2. A separate software module can be used for learning 

with a solution that implements synapses through AER 

packets, and which uses tables to store both the 

connection information and the “weight” of each 

connection.  Connections can be created and destroyed 

in the table as well.  This is the case for SpiNNaker’s 

tables, the tree of connections in FACETs and 

Neurogrid, and the separate tables used in IFAT.  It 

should also be possible to create and remove neurons 

via the separate process, given an appropriate interface 

to the neuron implementation. 

3. In a solution with direct wiring, at least some of the 

learning mechanism must be implemented in the 

artificial neuron itself.  FACETS includes hardware-

based STDP in the HICANN chips.  However, a 

separate mechanism for the creation and removal of 

neurons would be needed in this case, and there is 

currently no practical solution for the growth of new 

synaptic connections as direct “wires,” particularly over 

longer distances. 

Although neuroscience’s understanding of learning and 

plasticity is currently limited, and artificial brain projects 

have offered incomplete solutions to date, these projects 

will likely prove important in our understanding going 

forward.  It is fortunate that most of the brain emulation 

projects have left the learning mechanism open, to be 

programmed in software.  It is very difficult to understand 

synaptic changes and learning in a heavily-interconnected 

biological brain: experiments in vivo are very difficult, and 

experiments in vitro do not deal with sufficiently-complex 

neuron networks. In an artificial brain, in contrast, it is 

possible to experiment with many different plasticity 

mechanisms, monitoring all the neuron connections over 

time, and observing the learning behavior. These 

experiments could prove to be the most useful contribution 

of artificial brain projects over the coming decade. 

In addition to the learning problem, an unsolved problem 

is the initial configuration of an artificial brain prior to 

developmental change and learning.  Embryologically, 

neurons are of many different types and have at least some 

genetically-determined connections or connection patterns 

that are almost certainly essential to intelligent behavior, 

and without which learning would probably not occur.  It is 

known that connections are pruned as the brain matures and 

knowledge specializes the neural circuits.  Even at the 

individual neuron level, the initial configuration of synaptic 

strengths, threshold voltages, and integration behavior in an 

artificial brain, along with models of learning mechanisms 

to be used, will certainly determine whether learning occurs 

later.  In Ishikevich’s favored learning model, for example, 

no initial values for the parameters a, b, c, and d are 

specified for his equations.  An open question is what 

should these be.   

4.4 Overall Scalability 

Armed with some understanding of the technologies and 

mechanisms proposed for artificial brains, we can now 

examine practical issues of overall scalability. 

All-software solutions such as the Blue Brain project do 

not directly address scalability.  Instead, the problem is 

reduced to finding a sufficiently large supercomputer to run 

the software at the desired scale.  Since that project is 

already experiencing limitations running on one of the 

largest supercomputers available to date, and they are 

emulating less than .0000001% of the neurons in the human 

cortex, there are obviously scaling issues here, and there are 

power and scaling constraints on the largest supercomputers 

that can be built.  Another alternative would be a software 

approach decomposed into processes that could run on 

many distributed computers, e.g. using computing power on 

many sites or cloud computing.  We are not aware of a 

solution using this approach to date, but the communication 

latency and bandwidth could prove to be a problem with 

this approach, even if enough processing power could be 

secured. 

In all the other projects, a hardware solution is proposed.  

The scaling challenges in these projects fall into four 

categories: 
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 Physical size and packaging: Each project proposes 

integrated circuit chips that emulate some number of 

neurons and connections.  For example, the NeuroDyn 

chip can perform Hodgkin-Huxley simulations of 4 

neurons with limited fan-in, the Spikey chips can 

simulate 8 neurons with fan-in comparable to cortical 

neurons, and the current SpiNNaker chip is projected to 

perform about 18,000 much simpler point-neuron 

simulations.  To scale to the billions of neurons in the 

mammalian cortex, millions of chips would be required 

using present-day CMOS technology, even with the 

simple point-neuron model.   

 Connectivity: A separate problem involves the fan-in 

and fan-out of connections between the emulated 

neurons within and between the chips.  No current 

technology allows for reasonably-sized emulated 

neuron circuits with an average of 10,000 inputs and 

outputs to other neuron circuits on a chip: the 

combinatorial explosion of input wires to each neuron 

would overwhelm any integrated circuit layout with 

more than a few dozen neurons.  Thus, almost all of 

the projects we detailed have turned to digital 

networking.  However, there are bandwidth and 

circuitry limitations to networking, as we will discuss 

shortly. 

 Power and heat issues: The human brain is incredibly 

power-efficient.  It is a 3-dimensional computer with 

liquid coolant/power delivery.  Even with the most 

energy-efficient integrated circuit technologies we have, 

heat dissipation and total power requirements will be a 

problem in scaling to the size of biological brains.  The 

neuromorphic solutions (FACETS, Neurogrid, 

NeuroDyn, IFAT) are most promising in terms of 

lowest power consumption per emulated neural time 

unit. For example, the HICANN wafer uses only 1 nJ of 

energy per synaptic transmission, less than a single 

instruction on an ARM processor.  At the same time, 

the speed of neural emulation and communication in 

neuromorphic solutions can run 10,000 times faster 

than biological equivalents. 

 Ancillary issues: The artificial brain projects propose 

ancillary mechanisms that must also scale along with 

the artificial brain.  For example, if a software process 

separate from the actual neuron implementations is 

responsible for learning, then it must scale alongside.  

A question arises as to whether the learning process be 

decomposed into many cooperating learning processes 

on multiple processors distributed throughout a network. 

How well does AER networking scale? If there are about 

40 billion neurons in the human cortex and thalamus, with 

an average axon fan-out to 10,000 synapses, firing at an 

average of 10 times per second, then AER networking 

would need to deliver about 4x10
14

 packets per second, with 

at least 4x10
10

 originating packets per second.  To put this 

in perspective, it is recently estimated that the total U.S. 

user Internet traffic averages about 8x10
8
 packets per 

second.  Admittedly, the AER packets are fewer bytes, and 

over short distances, but the routing overhead is comparable, 

and the routing tables are much bigger, given 40 billion 

destinations.  Even if the firing rate is significantly lower 

than our estimate, the total traffic is staggering when taken 

as a whole.   

Luckily, the actual number of inter-chip packets might be 

much smaller. There is evidence that interconnectivity is 

much higher within a cortical column and minicolumn.  

With an estimated 10,000 neurons in a cortical column, 

cortical columns could fit entirely on planned second-

generation chips for projects such as SpiNNaker and 

FACETS.  If 99% of connectivity is within a column, this 

reduces the inter-column and inter-chip bandwidth 100 

times, and earlier-mentioned research on a “Rent exponent” 

by Bassett et al. [11] suggests that locality of connectivity 

may extend beyond cortical columns.  

Even without locality of reference assumptions, the 

SpiNNaker group provides some evidence that their AER 

network can scale to 1 billion neurons with a fanout of 

1,000 synapses per neuron [55]. While falling short of the 

scale of the human cortex, this is a promising result.  Their 

torus of 65,000 interconnected chips, each with its own 

router, and each connected to 6 neighbors, allows more 

even distribution of load than hierarchical networks and 

subnetworks.  Thus with the right networking topology, 

some help from locality of reference, and a significant 

portion of computing power dedicated to routing, it may be 

possible to support AER networking on the scale of the 

human brain,  but this remains to be demonstrated. 

Turning our attention from neuron connectivity to neuron 

emulation, there are scalability issues there as well.   

As just discussed, Blue Brain emulates a small, fractional 

percent of brain neurons in much less than real time.   

The analog neuromorphic circuit approach requires less 

hardware due to the special-purpose nature of the circuits, 

and the economy of analog "computations," absent any 

interconnection hardware.   Because the computations are 

inexact, direct comparison is not possible.  However, 

neurons with complexity somewhere between Blue Brain 

and SpiNNaker could be realized with synaptic plasticity 

and dendritic computations with less than a million 

transistors per neuron [38].  Given the potential for over a 

billion transistors per chip with current technology, each 

neuromorphic chip could hold over 1,000 neurons.  

However, note that many millions of chips would still be 

required for an artificial brain, and the connectivity and 

structural plasticity problems with neuromorphic analog 

circuits remain.    Major breakthroughs in nanotechnology 

that allow 3-dimensional construction and real-time 

modification of electronic circuits would be required to 

achieve an analog whole brain. 

The highest scale is achieved by SpiNNaker, with its 

simpler neuron model.  However, even using SpiNNaker 

chips with 18 CPUs, over a million chips would be required 

for the human cortex. And for bio-realism of the complexity 

of Hodgkin-Huxley with two or more levels per neuron, and 

synapses and dendritic arbors with commensurate 

complexity, a much smaller number of neurons could be 

emulated by each CPU. 
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In summary, SpiNNaker’s neuroprocessor approach 

gives the highest scalability but with limited bio-realism, 

the neurosimulation approach gives the highest bio-realism 

with scalability limited by the largest supercomputer 

available, and the neuromorphic approaches are in between 

in bio-realism, being limited in scalability until the “wiring” 

and circuit density problems are solved. 

5. Conclusions 

We are a long way from a working artificial brain.  Given 

our limited of understanding of biological neurons and 

learning processes, the connectivity scalability issues, and 

the substantial computing power required to emulate 

neuronal function, readers may understandably be skeptical 

that a group of interconnected artificial neurons would 

possibly behave in a fashion similar to the simplest animal 

brains, let alone display intelligence. 

With the drawbacks of all three approaches we discussed, 

it seems that there is not one good approach to all of the 

problems.  In the near term, software is easier to 

experiment with than hardware, and connectivity and 

structural plasticity are practical to attain in partial brain 

emulations.  Experiments with software may produce more 

progress on requirements for neural modeling.  At the same 

time, experiments with analog hardware might demonstrate 

economies of scale and use of nanotechnologies for future 

whole brain emulation.   

In our opinion, the most promising approaches depend on 

the goals and timeframe: 

1. In the short term, scalability to the size of a mammalian 

brain is not practical, but software simulation seems 

most promising for emulation and understanding of 

small networks of neurons, e.g. to experiment with 

learning algorithms, since software is so easily 

modified. 

2. An approach like SpiNNaker’s, with loosely-coupled 

processors and AER networking, seems most likely to 

yield neural emulation on the scale of the entire brain in 

the medium term.  The result might or might not 

behave like a biological brain, given the simplifying 

assumptions, e.g. using a point neuron model and 

delivering spikes rather than continuous synaptic 

connectivity. 

3. In the long term, if a solution such as DNA-guided self-

assembly of nanoelectronics is developed to allow self-

guided wiring and re-wiring of dendrites and axons, a 

neuromorphic analog solution seems the only approach 

that can give bio-realism on a large scale. 

Neuroscientists are uncovering additional mechanisms 

and aspects of neural behavior daily, and neural models for 

artificial brains may become significantly more complex 

with future discoveries.   However, an artificial brain, 

limited and simplified, does provide a test bed for research 

into learning and memory, and we expect that substantial 

progress will be made through new technologies and ideas 

over the coming decades.  In addition, research on smaller-

scale artificial neural networks still provides considerable 

value in applications such as signal processing and pattern 

recognition, and experiments with neural networks may 

give us insights into learning and other aspects of the brain.  

Independent of any value to neuroscience, efforts on 

artificial brain emulation also provide value to computer 

science.  Projects such as SpiNNaker yield new computer 

architectures that have other valuable applications, and 

emulation of the brain may yield new approaches to 

artificial intelligence.  If the goal is artificial intelligence or 

new computer architectures rather than bio-realistic brain 

emulation, then it is also possible that simpler neuron 

emulations would be adequate.  Thus, we see value in 

continued research despite our pessimism about the 

timeframe and current technologies for brain emulation. 
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Abstract 

Autonomous agency is complex, bound up as it is with moral 

agency. And, moral agency is anything but clear. Confronted with 

many unanswered questions, researchers often operate under two 

distinct notions of autonomy, one associated with human and 

another with artificial agents. This lack of uniformity is 

theoretically unappealing, impedes progress on both forms of 

agency, and its constructive resolution is the focus of this paper. 

First, we review Kant's account of autonomous agency, and then 

turn to some contemporary analyses in which this robust 

understanding of autonomy is reduced to suit artificial applications. 

From this reduction, we review some contemporary approaches to 

understanding autonomy, thereby opening a way back to a 

comprehensive account of agency. And finally, we integrate the 

results of this discussion into a model of autonomous agency that 

can serve both as a platform for testing theories of moral decision 

and action, and as a framework for engineering and evaluating 

autonomous agents and agency. 

Keywords: Autonomous agent, artificial intelligence, moral 

decision and action 

1. Introduction 

Autonomous agency is complex, bound up as it is with 

moral agency. Indeed, “a moral agent is necessarily an 

autonomous agent.”(Smithers, 1997, page 95) And, moral 

agency is anything but clear, bound up as it is with things 

like freewill, responsibility, intention, conscience, personal 

identity and selfhood. Confronted with so many un- 

answered questions, researchers often operate under two 

distinct notions of autonomy, one associated with human 

and another with artificial agents. This lack of uniformity is 

theoretically unappealing, impedes progress on both forms 

of agency, and its constructive resolution is the focus of this 

paper. 

Towards this end, Anthony Beavers (2012) suggests that 

the “hard problem” in morality lies in “rearranging” the 

landscape of traditional moral concepts so that solutions to 

problems in engineering artificial moral agents (AMAs) 

present themselves. The alternative on his account is the 

possible end of ethics, “ethical nihilism,” with traditional 

moral concepts such as conscience and autonomy replaced 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

only by the hollow objective determination of an agent’s 

position in a chain of efficient causation. Meanwhile, 

Wendell Wallach (2010) suspects that the lack of progress 

in ethics is due to a preoccupation with isolable moral 

faculties, rather than “recognizing that moral acumen 

emerges from a host of cognitive mechanisms” and that “all 

of those considerations either merge into a composite 

feeling or conflict in ways that prompt the need for further 

attention and reflection,” with the moral agent necessarily 

functioning as an “integrated being.”(page 249) Wallach 

thereby calls for a “comprehensive” account of moral 

agency, one that can serve as “a platform for testing the 

accuracy or viability of theories regarding the manner in 

which humans arrive at satisfactory decisions and act in 

ways that minimize harms.”(page 248) 

It is my suspicion that Wallach’s demands can be met 

through something like Beavers’ means. The conceptual 

resources necessary for a comprehensive account of 

autonomous moral agency are available in traditional ethics, 

but have been hidden behind conventional interpretations 

and summarily established conceptions of human relative to 

artificial agency. The present paper attempts some moral 

landscaping to stop the erosion of ethics into transactional 

recordkeeping. First, it reviews some analyses in which 

autonomy is reduced, inviting ethical nihilism. Then, it 

clears the way to a comprehensive account of agency. 

Finally, it constructs such an account from traditional 

materials, resulting in a model of autonomous agency that is 

not only integrated, but integrative, and that can serve both 

as a platform for testing theories of moral decision and 

action, and as a framework for engineering and evaluating 

autonomous agents and agency. 

2. Recognizing distinctions 

Etymologically, the term “autonomous” is ancient Greek, 

with ‘‘auto’’ meaning self, and ‘‘nomos’’ meaning law. 

Originally, it applied to societies, cities, and states, which 

were considered autonomous when their members lived 

according to custom and convention specific to their 

common environment, thereby creating their own laws, 

Review Paper 
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rather than having laws externally imposed. Autonomy thus 

means “self-governing.” 

Immanuel Kant developed this original notion of 

autonomy in terms of individual moral agency, with the 

model for the autonomous agent being “the political 

sovereign not subject to any outside authority, who has the 

power to enact law,” and autonomous thereby meaning 

“self-sovereign.”(Reath, 2006, page 122) From here, Kant 

specified that each is not only able to create and to act from 

laws of his own creation, to be “rational,” but “to pass 

judgment upon himself and his own actions” from the ideal 

vantage point of a “kingdom of ends,” an ideal arrived at 

through the exercise of moral duty, for every “man” “to 

make mankind in general his end,”(Kant, 1780, page 26) 

meaning that every rational agent should identify its own 

interests with the “kingdom of ends” in the mode of the 

moral equivalent of the political sovereign. Famously, this 

Kantian agent is guided by a single principle, the 

categorical imperative, one form of which commands an 

agent “Never to employ himself or others as a mean, but 

always as an end in himself,”(Kant, 1796, page 37) with 

“end in himself” meaning self-sovereign, and so 

qualitatively equivalent with the agent, itself.(see Kant, 

1788, page 89) 

Autonomy thus requires that the autonomous moral agent 

be free from selfish material desires, thereby embodying 

virtue worthy of “reverence,” i.e. deserving of the respect 

and admiration cum emulation deserving of a beneficent 

king. “Autonomy is therefore the ground of the dignity of 

humanity, and also of every other intelligent nature 

whatsoever.”(Kant, 1796, page 39) 

However, it is exactly this degree of autonomy that is not 

afforded artificial agents in their very conception. Consider 

Ronald Arkin’s 2009 text Governing lethal behavior in 

autonomous robots, with the obvious concern, how one 

“governs” “autonomous” agents, an equally obvious 

oxymoron. On this account, robot “autonomy” is limited 

self-direction toward goals of external origin within a 

human command hierarchy, i.e. serving as means to 

another’s ends. After all, self-legislating warrior-robots 

acting to preserve dignity dignity, rather than blindly 

following orders to maim and murder, run counter to the 

intractable role that Arkin presumes violence playing in the 

press of history. We will have more to say about this 

presumption, and what it means to our conception of 

autonomy, in a moment. Regardless, on such account, 

AMAs are better understood as AAAs, artificial amoral 

agents, with robot autonomy rather rendered as not-

autonomy, at all. 

A similar reduction is effected by Michael Arbib (2005). 

On his assay, humans enjoy the dignity of self-

determination with each “finding his or her own path in 

which work, play, personal relations, family, and so on can 

be chosen and balanced in a way that grows out of the 

subject’s experience rather than being imposed by others,” 

while for a robot “the sense is of a machine that has 

considerable control over its sensory inputs and the ability 

to choose actions based on an adaptive set of criteria rather 

than too rigidly predesigned a program.”(Arbib, 2005, page 

371) With artificial agents cast as objects of purely external 

determination rather than moral subjects, this is also a 

characterization of not-autonomous amoral agency. Finally, 

the rigid distinction between human and artificial moral 

agency is articulated by Tom Ziemke (2008) in terms of a 

Kantian inspired distinction between the “phenomenal” and 

“noumenal,” with the first ascribed and the latter emerging 

via autopoietic self-organization, and with robots ultimately 

lacking the material constitution necessary to emerge as 

autonomous in the full sense, not-autonomous and so 

amoral by default. 

In each preceding case, researchers propose two classes 

of autonomy so different that it is difficult to trace them to 

same concept at all. This divide can be smoothed over by 

rendering differences in autonomy by degree, however. 

Prima facie, there are three degrees of autonomous agency 

applicable to artificial agents. One, as a direct extension of 

human agency, only. This is a machine on auto-pilot, for 

example a landmine or a BMW on cruise control. Two, as 

an indirect extension of human agency. This is the 

conception most common to artificial agents, that they will 

act according to interred rules fed top-down, whether 

categorical principles or conditional guidelines. Arkin’s 

military robots serve as good examples here; as human 

soldiers follow codes of warfare, so should their machines. 

The third degree specifies autonomy in the fully sovereign 

sense, representing both the promise of continued research 

in artificial intelligence – a fully autonomous AMA – and 

the promise of traditional moral education – autonomous 

human agents (AHAs) thriving in a just world of their own 

creation. 

James Moor’s is perhaps the most influential graduated 

analysis of autonomous moral agency.(Moor, 2006, 2007) 

At the lowest level, any agent or artifact the actions of 

which have ethical consequences qualifies as an “ethical 

impact agent.” Moor offers the replacement of human 

jockeys with robotic jockeys in Qatar as an example here, 

whereby humans were freed from torturous servitude by 

machines unable to suffer similarly. One level higher, 

“implicit ethical agents” are morally significant by design. 

Moor's examples of such are spam-bots and airplane 

instruments that warn pilots of unsafe conditions, clearly 

degrees of currently realized ethical “agency,” and still 

direct extensions of human agency. Moor’s third type of 

ethical agent, the “explicit ethical agent,” is able to identify 

morally salient information within specific contexts and to 

act according to appropriate principles. An indirect 

extension of human agency, Moor feels that this is the 

“paradigm case” of robot ethics, “philosophically 

interesting” and “practically important” while not too 

sophisticated to be realized. Finally, Moor’s fourth type of 

ethical agent is the “fully ethical agent,” by Moor’s 

estimation not a level of agency likely to be realized in 

robots, representing self-sovereign agency characterized by 

three distinctly human characteristics - free will, 

consciousness, and intentionality - the engineering of which 

present serious problems. 

Schermerhorn and Scheutz (2004) have also proposed a 

graduated classificatory schema. Theirs includes perceived 
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autonomy in the spirit of Ziemke’s “phenomenal” 

autonomy. Their first degree of autonomy involves 

executing some function without direct human assistance. 

Robotic jockeys qualify here, as would robotic vacuum 

sweepers. The second involves following human directives, 

without the need for step-by-step direction. Military 

missions would qualify as such directives, with this degree 

expressed by mission-capable agents. Schermerhorn and 

Scheutz’s third level involves goal self-ascription and 

independent decision-making facilitated by self-reflective 

capacities over intentional states, corresponding to the fully 

ethical agent on Moor’s hierarchy.  

Finally, Schermerhorn and Scheutz point to a neglected 

aspect of autonomous agency, the perception and ascription 

of autonomy based on demonstrations of agency. For 

instance, in some situations, an autonomous agent will 

simply sweep the floor when put to that task, while in 

others it will stop sweeping to save the neighbor’s cat from 

a burning barn, with this latter demonstration inviting an 

ascription of autonomy and the former, not. 

The trouble here is that autonomy involves the context 

sensitive capacity to do the right things at the right times, 

and fully autonomous agents do not always appear that way, 

confounding any easy ascription on phenomenal bases. 

Autonomy is “adjustable,” and the demonstrated capacity 

to adjust the degree of autonomy that an agent expresses is 

essential to both autonomous agency and its ascription. 

Being a fully autonomous agent often involves ceding 

autonomy through “transfer-of-control,” reflecting the fact 

that even fully autonomous agents pursue objectives of 

external derivation, e.g. as part of a team.(Pynadath et.al., 

2002) Extending the context of team to include family, 

company, society, it becomes clear that most human action 

is externally determined, with original and on-going control 

over one’s own “path in life” ceded well prior to birth and 

as a matter of course. In light of this fact, any distinction 

between human and artificial agent based on apparent 

source of guidance and goal may be misplaced. And this 

poses a real problem, not only for our ascription of 

autonomy to artificial agents, but for any conception of 

autonomous agency, at all. 

For instance, consider that in the great team that is the 

military, both robots and humans are embedded within the 

same command hierarchy, in which “commanders must 

define the mission for the autonomous agent whether it be a 

human soldier or a robot.”(Arkin, 2009, pages 37-38) 

Human and robot are equally embedded in this chain of 

command, with any failure to follow orders not revered as 

demonstrated moral virtue, but rather condemned as 

malfunction. Accordingly, to conceive of the human soldier 

as an autonomous agent in any non-contradictory sense 

requires a notion of autonomy inclusive of non-human 

killing machines, as well. Thus, we might reduce 

autonomous agency to “an embodied system designed to 

satisfy internal or external goals by its own actions while in 

continuous long term interaction with the environment in 

which it is situated.”(Beer, 1995, page 173) But, this is just 

to say that an autonomous agent is simply a kind of efficient 

cause, that there is ultimately no distinction to be made 

between human and artificial agency, and that Beavers’ 

fears of “ethical nihilism” have come true. 

3. Rearranging the landscape 

Interestingly, Kant also warned of the “quiet death” of 

morality, by the reduction of autonomy to “the physical 

order of nature.”(Kant, 1780, page 7) But, before we review 

his defense of moral autonomy, it will pay to trace 

Ziemke’s concept of this strong, “noumenal” autonomy 

typically reserved for humans to its origins in autopoiesis. 

“Autopoiesis,” from the Greek meaning “self-producing,” 

represents a rigid distinction between living and artificial 

agency according to which artificial agents are 

constitutionally incapable of autonomy, with an “allopoietic 

system like a robot deriving function from an external 

source,” and the “primary function” of an autopoietic 

system “self-renewal through self-referential 

activity.”(Amoroso, 2004, page 144) “Autopoiesis is the 

mechanism that imparts autonomy to the living,”(Luisi, 

2003, page 52) with “the minimal form of autonomy” “a 

circular process of self-production where the cellular 

metabolism and the surface membrane it produces are the 

key terms.”(Weber & Varela, 2002, page 115) So given, an 

autopoietic system is an organism that is both self-

organizing, “one that continuously produces the 

components that specify it, while at the same time realizing 

it (the system) as a concrete unity in space and time, which 

makes the network of production of components 

possible,”(Varela, 1992, page 5) and far-from-equilibrium 

due to metabolic storage and “budgeting” of matter and 

energy in the development and maintenance of the “bodily 

fabric.”(Boden, 1999, 2000) 

We have already confronted some difficulties in 

distinctions based in the sources of goals, but there is much 

more to be said of “self-referential activity,” a concept most 

important to the following section. According to an 

autopoietical account of agency, an organismThis bodily 

fabric emerges as a single, bound entity within “molecular 

space,” with its properties (including semiological 

properties as signs and symbols are not abstract tokens but 

rather material tools) “structurally determined” by potential 

and actual chemical changes to the system.(Romesin, 2002) 

Co-emergent with the organism is the “niche,” “the domain 

of interaction of the system with its surroundings, 

conditioning its possible ways of coupling with the 

environment,”(Rudrauf et.al., 2003, page 34) in terms of 

which it cognizes and acts in “selective coupling” with 

aspects of the environment, constituting the “operational 

closure” of the system., “the domain of interaction of the 

system with its surroundings, conditioning its possible ways 

of coupling with the environment.”(Rudrauf et.al., 2003, 

page 34) This relationship dynamic between selective 

coupling and self-conditioning in a bubble of structurally 

determined significance constitutes the “operational closure” 

of the system, invitingleads to a view of cognition as 

“enacted,” with the autopoietic system ultimately “creating 

its own world.”(Luisi, page 58) So understood, an agent is a 

“self-producing coherence” bound to “maintain itself as a 
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distinct unity as long as its basic concatenation of processes 

is kept intact in the face of perturbations, and will disappear 

when confronted with perturbations that go beyond a 

certain viable range which depends on the specific system 

considered.”(Varela, page 5) 

Perturbations - “inputs” generally speaking - are 

responsible for two general classes of change, those within 

a “certain viable range” being “changes of state” through 

which the capacity of the system to self-organize, or adapt, 

is maintained, and “disintegrative changes” through which 

it is not.(Romesin) As “operational closure” extends from 

the molecular to cellular to organismic levels of 

organization, and upwards to social, cultural, and 

philosophical levels, an agent’s niche can be understood as 

layers of increasingly conceptual order established in pro-

active defense against disintegrative change, thus implying 

that “our minds are, literally, inseparable” not only from our 

bodies but from the environment as we experience it, 

thereby constituting a peculiar sort of “prison.”(Rudrauf 

et.al., page 40). 

As with the soldier cemented within a command structure, 

it is difficult to see how entrenchment within one’s own 

“circular process of self-production” can ground 

autonomous agency in any non-contradictory sense. 

Effectively imprisoned in a semiological bubble of its own 

structural co-determination, this is as much as any artifact a 

portrait of not-autonomous agency. Comparatively, it seems 

that an agent with complete information about its embodied 

processes and origins, capable of specifying exact changes 

to its structure toward self-determined ends - swapping 

modules to suit particular purposes, as we might envision 

an artificial agent able to do - would enjoy greater 

autonomy than could any “living” thing. Thus, autopoiesis 

appears to be unnecessary for autonomous agency. 

The case for an autopoietical foundation of autonomy is 

further weakened by the fact that the autopoietical 

distinction between living and non-living systems, and so 

the logic by which it “imparts autonomy to the living,” is 

not very clear. For instance, Varela is reported to have not 

objected to the ascription of life to some synthetic 

molecular structures, Luisi’s micelles, arguing that “our 

notion of life is heavily permeated by a religious bias (the 

notion of soul), which makes it difficult to freely use the 

word “life” for simple chemical systems,” and that “Once 

one is liberated from these constraints, the term “life” may 

acquire a plainer and more usable meaning.”(Luisi, page 58) 

However, in making this move, any necessary relationship 

between life and autonomy in any robust sense is severed. 

In like spirit, one may argue for similar liberality 

regarding the term “autopoietic.” Once liberated from 

constraints of cellular metabolism and surface membranes, 

autopoiesis can be fruitfully applied in the analysis of other 

systems including institutions and organizations (Goldspink 

and Kay, 2003, Hall and Dousala, 2010), legal systems 

(Vilaca, 2010) and social systems as a whole, (Leydesdorf, 

1993) most famously through the work of Niklas Luhmann 

on whose account such systems are decidedly 

autonomous.(see Viskovatoff, 1999) Finally, with the 

autonomy of social systems, we are returned to the original, 

very plain and useful notion of autonomy with which this 

paper began. 

In order to construct a comprehensive account of 

autonomy inclusive of both human and artificial agents 

while avoiding “ethical nihilism,” however, we must review 

two further concepts from the autopoietical lexicon, 

“homeostasis” and “decoupling.” A concept fruitfully 

developed by Antonio Damasio within the cognitive 

sciences, homeostasis (or better “homeodynamics”) is the 

dynamic stability of a complex system achieved by 

balancing internal and external pressures through largely 

automated physical processes. On Damasio’s account, as 

the cells of the body “gravitate” toward “fluid” states and 

away from “strained” “configurations of body state,” they 

contribute to the “contents of feelings” as “both the positive 

and negative valence of feelings and their intensity are 

aligned with the overall ease or difficulty with which life 

events are proceeding.”(Damasio, 2003, page 132) The 

positive association with objects that facilitate said stability 

transforms the world of objects into a space of value, such 

that “by the time we are old enough to write books, few if 

any objects in the world are emotionally neutral,” with felt 

content rendered as “foundational images in the stream of 

mind” corresponding to “some structure of the body, in a 

particular state and set of circumstances.”(pages 197 and 56) 

Here, in the “gravitation” away from strained states, there 

is a basis for Wallach’s “composite feeling” that is at the 

same time not limited to “living” systems. Consider, in this 

light, the molecule. The common representation of a 

molecule is that of a system sans strain, static and at rest. 

However, a more realistic image oscillates from strained 

configuration to strained configuration in dynamic 

equilibrium between forces internal and external. Now, a 

molecule doesn’t “create its own world,” but its presence 

does influence its environment, in special cases grounding 

the emergence of cellular and then organismic levels of 

organization, ultimately leading to evaluative content in the 

form of “the feeling of what happens,” with even social 

systems emerging from “molecular space” by extension. 

This is not to say that “homeostasis” is the proper term for 

molecular dynamics. Rather, it is to say that everything in 

nature is a dynamic system, with homeostasis simply 

naming equilibrium seeking tendencies present in higher 

orders of organization. Following Alfred Kuhn (1974), we 

may suggest that all systems seek equilibrium in terms of 

their environments, and understand homeostasis as the 

general tendency for complex systems to compensate for 

forces of change while maintaining stability, integrity, and 

by extension even human dignity. 

Indeed, it is this general tendency that ultimately grounds 

the emergence of autopoietical niches, themselves. Niches 

are spaces of cognition and action protective against forces 

of disintegrative change, fundamentally realized in Luisi’s 

“living” micelles. A micelle insulates its interiority from 

potentially damaging external pressures, constituting a 

fundamental integrity “decoupled” from the environment, a 

proto-semiological bubble of self-production, effectively 

creating its own world within itself and of its own resources. 
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It is from this capacity to decouple from the environment, 

and not “life” however understood, that we can construct an 

account of strong autonomy equally inclusive of human and 

artificial agents. Following de Bruin and Kastner (2011), 

“decoupling” means “reducing direct effects of 

environmental stimulation and opening up possibilities for 

internally regulated behavior,”(page 10) thereby freeing an 

agent to act according to internal constraints rather than 

reflexively according to external triggers. These internal 

constraints extend throughout the range of agency, from 

chemical to symbolic, with capable agents creating their 

own purely conceptual worlds from their own cognitive 

resources. Decoupling thereby facilitates “hypothetical 

thought,” a computationally demanding operation 

facilitated by formal constructs including counterfactuals 

and imperatives. “For example, hypothetical thought 

involves representing assumptions, and linguistic forms 

such as conditionals provide a medium for such 

representations.”(Stanovish and Toplak, 2012, page 10) 

Formal representations of hypotheticals further facilitate 

autonomy by representing situations potentially attainable 

through action and decoupled from an agent’s structurally 

determined chemical-environmental entrenchment. This 

capacity to formally represent alternatives that guide action 

is “syntax autonomy.” Syntax autonomy relies on 

“symbolic memory” through which agents gain “an element 

of dynamical incoherence with their environment (the 

strong sense of agency).”(Rocha, 1998, page 10) This 

formally mediated “incoherence” grounds the emergence of 

social and moral systems represented in theories of ethics 

and writs of history and law. Through these formal 

constructs, agents stipulate ends toward which they feel that 

actions should aim in a process “which involves the mutual 

orientation of agents in their respective cognitive domains 

to shared possibilities for future.”(Beer, 2004, page 324) All 

told, this capacity to decouple from external pressures 

through symbolic mediation and to coordinate action to 

commonly beneficial ends over temporal limits far 

exceeding those of any constitutive agent is a powerful 

evolutionary force, known in traditional moral theory as 

“freewill.”(see Juarrero, 2009) 

4. Reinterpreting the tradition. 

The preceding may seem to have strayed far from Kant’s 

moral theory, when in fact we have merely plotted points 

for comparison in more recent discussions. For example, 

Kant anticipated the autopoietic distinction between life and 

artifact in terms of self-organization. In both, each part 

exists “by means of the other parts” as well as “for the sake 

of the others and the whole.” However, in the natural 

organism “its parts are all organs reciprocally producing 

each other,” so constituting “a whole by their own causality.” 

Such an organized being is not a “mere machine, for that 

has merely moving power, but it possesses in itself a 

formative power of a self-propagating kind which it 

communicates to its materials though they have it not of 

themselves; it organizes them.”(Kant, 1790, page 202) So 

understood, an organism is a “natural purpose” for Kant, 

“just the way we normally, prima facie and intuitively, view 

the living.”(Weber and Varela, 2002, page 106) 

However, also on Kant’s account, far from autopoiesis 

imparting autonomy to the living, autonomy is hamstrung 

by self-productive requirements of the bodily fabric. “Life 

is the faculty a being has of acting according to laws of the 

faculty of desire.”(Kant, 1788, footnote page 9) Meanwhile, 

autonomy, “autonomy of the will,” or “freedom” as he 

variously calls it, “is a property of all rational beings,” and 

to be free an agent must merely “regard itself as the author 

of its principles independent of foreign influences,”(Kant, 

1785, pages 64-5) with such “foreign influences” including 

“the faculty of desire.” 

Accordingly, not only is life unnecessary for autonomy, 

it is a potential obstacle, calling into question the moral 

superiority presumed of human over artificial agents. Let’s 

revisit the Kantian inspiration behind Ziemke’s distinction 

between “noumenal” and “phenomenal” agency in this light. 

For Kant, when an agent conceives of itself as a 

“noumenon,” he conceives of himself as a “thing in itself,” 

“as pure intelligence in an existence not dependent on the 

condition of time,” i.e. as if “immortal.”(Kant, 1788 page 

118) Here, we may understand “immortal” as free from the 

motivating necessities of embodiment, including the drives 

to maintain bodily integrity that so occupy the living agent, 

such that “he can contain a principle by which that causality 

acting according to laws of nature is determined, but which 

is itself free from all laws of nature.”(page 118) So 

unfettered, an agent can focus on syntactic integrity, i.e. act 

in accord with the categorical imperative. This is why Kant 

equates autonomy of will with moral law.(see for example 

Kant, 1785, pages 62 and 66) “Autonomy of the will is that 

property of it by which it is a law to itself (independently of 

any property of the objects of volition).”(page 56) The 

difficulty for Ziemke’s schema is that this independence is 

not necessarily observable, rendering, as we have already 

seen, any phenomenal ascription of autonomous agency 

suspect. 

Digging deeper, there is in Kant a model of cognition and 

agency both accounting for these inner processes as well as 

giving us something to look for in ascribing autonomy. 

Excavating this model from traditional moral verbiage is 

difficult, however. To begin with, it is not enough for the 

Kantian moral agent to act freely toward just any ideal end, 

for instance out of purely scientific interest toward realizing 

the world as it is rather than as it appears, i.e. the 

“noumenal” rather than “phenomenal.” Such agency is 

ultimately contingent on some “object of volition.” Rather, 

on Kant’s account, the ultimate promise of autonomous 

agency presents itself in the form of an “archetypal” 

world.(Kant, 1785, page 44) The archetypal world, 

variously referred to as the “kingdom of ends,” the 

“summum bonum,” the “supreme independent good,” and 

even “God,” is an ideal moral situation differing from the 

noumenal in that it is one with which an agent is “not in a 

merely contingent but in a universal and necessary 

connection,” being the “destination” “assigned” by the 

moral law, “independent of animality,” the “summum 

bonum” of the world.(Kant, 1788, page 165) 
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Kant’s archetypal world appears to represent the mythical 

Christian “heaven,” and such was in fact the model. 

However, Kant explicitly rejects the notion that recognition 

of any “God” is necessary for autonomy – and with this 

goes any requirement of a Christian “soul,” for 

example.(Kant, 1788, page 133) Rather, Kant argues that an 

agent must merely hold three conceptions in order to be 

(potentially) autonomous: freedom (specifically, conceiving 

one’s self as having the capacity to self-legislate, rather 

than serve bodily desires), immortality (conceiving one’s 

self as if unbound by temporal constraints on the preceding), 

and God as the existence of a “supreme independent 

good.”(page 137) “God” so understood is a destination, the 

archetypal end of action and “object of a will morally 

determined.” Actions in accord with this ideal moral 

situation produce a deep moral pleasure subjectively 

realized as “harmony” with the extant realm consisting of 

all intelligent beings sharing in this ideal, with self-

conception as “free” and “immortal” serving as limiting 

conditions on realizing this end. 

Here, we are approaching an answer to Wallach’s call for 

a comprehensive “platform for testing,” noting that Kant 

also asks “What, then, is really pure morality, by which as a 

touchstone we must test the moral significance of every 

action?”(Kant, 1788, page 157) The key to answering this 

question lies in understanding how this "harmony" with the 

archetypal moral situation is possible for any “intelligent 

being,” as it is this relationship that will finally bring Kant’s 

model of moral cognition into the clear. 

Intelligent being, synonymous with rational being, is the 

minimal condition for autonomy, the capacity to self-

legislate. Autonomous action is determined by conceptions 

of law, rather than by “animality.”(see Kant, 1788, pages 37 

and 129) Thus, the Kantian portrait of agency is two-sided. 

One side is “immanent” through “transcendence,” a “world 

of intelligence” and product of “intelligible being.” The 

other is product of the immediate environment, animal 

attraction to “objects of volition” within the phenomenal 

world of sense.(page 108) These constitute two essential 

poles within the agent, one material and one ideal, as the 

Kantian agent “has two points of view from which he can 

regard himself, and recognize laws of the exercise of his 

faculties, and consequently of all his actions,”(Kant, 1785, 

page 70) and from which he may “pass judgment upon 

himself and his own actions.” 

As such, Kantian operational closure extends from the 

phenomenal world of appearances to the noumenal world of 

“things in themselves,” understood as the archetypal world 

when one’s own autonomous moral potential is fully 

realized. In conceiving of himself as free from material and 

temporal constraints, with an eye to the universal ideal 

situation the realization of which is his potential as an 

intelligent being, the agent “transfers himself in thought” 

“from the impulses of sensibility into an order of things 

wholly different from that of his desires in the field of 

sensibility,” a situation in terms of which he does not 

imagine himself to be more comfortable, physically, but 

rather to have increased “intrinsic self-worth,” a “better 

person” and ”a member of the world of the 

understanding.”(Kant, 1785, page 72) Accordingly, when 

we, as intelligent beings, “conceive ourselves as free, we 

transfer ourselves into the world of understanding as 

members of it and recognize the autonomy of the will with 

its consequence, morality.”(page 70) “Moral pleasure” thus 

arises as an agent transcends embodied limitations and 

moves forward to the morally ideal “world of understanding” 

as his necessary and sufficient end of action. 

Here, we find the ultimate bedrock of autonomous 

agency. The “fluid state” of one's self conceived as one's 

best possible self at once attuned to the best conceivable 

situation motivates the autonomous agent to realize that 

situation of its own freewill. The very possibility of 

morality arises in this realization, and Kant ties the survival 

of morality to its corresponding pleasure. Further, as the 

capacity to embody this condition is what gives autonomy 

to the autonomous, in this we have the terms to draw 

adequate distinction between degrees of agency, artificial or 

otherwise. Indeed, Kant writes that “No man is wholly 

destitute of moral feeling, for if he were totally 

unsusceptible of this sensation he would be morally 

dead.”(Kant, 1780, page 30) Moreover, once this condition 

is realized, felt as a “good will,” a moral agent is loathe to 

let it go, and regress into a relatively strained state. 

However, in order to understand why, we must review 

another concept from traditional moral theory, conscience. 

5. Comprehending Autonomy 

In Kant’s words, conscience is “moral capacity” present as 

“an inward judge” “incorporated” into an autonomous 

agent’s being from the position of the moral ideal, “as the 

subjective principle of a responsibility for one’s deeds 

before God,”(Kant, 1780, page 41) i.e. from the perspective 

of the archetypal world. Conversely, to act contrary to the 

“dictates of conscience” produces a physical pain, “like 

grief, fear, and every other diseased condition,” evidence of 

a proportional disharmony. So, even as moral pleasure 

reveals the possibility of morality, the self-disgust of inner 

discord reveals the possibility of immorality, providing a 

powerful motivation to morality, for “when a man dreads 

nothing more than to find himself, on self-examination, 

worthless and contemptible in his own eyes, then every 

good moral disposition can be grafted on it, because this is 

the best, nay, the only guard that can keep off from the 

mind the pressure of ignoble and corrupting motives.”(Kant, 

1788, page 163)  

And, as conscience is of the fabric of rational agency, the 

moral duty to make “mankind in general his end” can be 

rewritten as “do nothing which by the nature of man might 

seduce him to that for which his conscience might hereafter 

torment him.”(Kant, 1780, page 24) Thus conscience is the 

mechanism, or following Kant the “spring,” of autonomous 

moral agency. Finally, so long as agency is conceived of as 

being bound by these two poles, good will and self-disgust, 

“ethical nihilism” is averted. 

With this, we have in hand all of the necessary 

ingredients to answer Wallach’s call for comprehensive 

ethics as “integrated being.” The mechanism of this 
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integration is conscience. Conscience is nothing less than 

the mechanism of autonomous moral agency. It is the 

embodied capacity for the hypothetical comparison of one 

situation with others in terms with which the agent already 

cognizes and acts. It lays out possible ends of action as 

situations in which the agent should reach homeostasis, 

allowing for their comparison and relative evaluation, with 

the difference providing the motivation to move toward 

some rather than others. As the constitution of these 

hypotheticals proceeds from a limited sphere of individual 

experience, augmented by affective and effective mirroring 

as well as taught “top-down,” the scope of conscience 

expands gradually over the course of operation. As terms 

increase, given sufficient resources, the agent may be able 

to balance greater numbers of dimensions, with associated 

dimensions bound together under single operators, 

simplifying the computational task. And, with the space of 

action mapped through this operation, conscience motivates 

the agent to seek situations with minimal strain between 

one’s own and others’ current and expected future 

situations, with the global minimum specified as the 

Kantian “summum bonum.” 

Some points of interest fall out of this portrait of 

autonomous moral cognition. For one thing, it naturalizes 

intension, understood as an internal, motivating and 

relatively evaluative felt strain, or tension, between 

conscientiously compared situations. It also naturalizes 

freewill, understood as embodied metabolic/energetic 

potential to construct and to act toward ends of one’s own 

self-determination. These characterizations differ from 

those common to philosophy of mind, demanding accounts 

that cannot be fully developed here. However, they have 

been developed as aspects of the ACTWith model of moral 

cognition, and this model has been articulated in the 

contexts of model based reasoning and moral agency 

(White, 2010), psychopathy and moral psychology (White, 

2012a), entropy and information ethics (White, 2012b) and 

autonomy in machine ethics (White, in press). For another 

thing, it is in terms of conscience that distinctions between 

degrees of autonomy can be consistently made. For 

example, Kant tells us directly that an agent would be 

merely “a marionette or automaton” without the tension 

between the sensible and the ideal made possible by 

conscience, with any sense of freedom a “mere delusion” 

deserving the name “only in a comparative sense, since, 

although the proximate determining causes are internal, yet 

the last and highest is found in a foreign land,”(Kant, 1788, 

page 102) i.e. not determined through conscience as a judge 

from the perspective of one’s own projected moral 

perfection, but externally. Returning to the issues with 

which this paper began, this model of autonomous moral 

cognition answers Wallach’s concerns about “integrated 

being,” surprisingly enough by describing a being which 

integrates situations within the space of itself, in the process 

constituting the moral sentiment that is at once autonomy’s 

signature. And, according to Beavers' proposal, it has been 

arrived at through some moral landscaping. 

Through the preceding, it should be clear that most 

researchers in artificial agency go wrong in presuming that 

Kantian moral law must be pre-programmed as an explicit 

set of rules, when Kant takes great pains to show that the 

moral law co-emerges with the constitution of the rational 

agent. This constitution grounds autonomy, and with this 

fact the moral law emerges from a capacity to act regardless 

of material inclination, towards some universally good end, 

the guiding principle to which is formalized in Kant’s 

categorical imperative. Accordingly, in response to Tonkins’ 

(2009) “challenge to machine ethics,” the real challenge in 

engineering fully autonomous AMAs lies in undoing 

prejudices stemming from misinterpretations of traditional 

ethical theory. The first step on this road to realize that 

these misunderstandings are only as temporary as are our 

personal commitments to them. Should autonomy be 

reduced to efficient causes, it is due only to our own lack of 

insight, our incapacity to free ourselves from our own 

embodied habits and conventions. So enslaved, so not-

autonomous, it is no wonder that autonomy should forever 

remain a mystery. 
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2013 INNS Awards 

By Leonid Perlovsky, Ph.D. 

Chair of the Awards Committee of 

the INNS 
 

The International Neural Network 

Society's Awards Program is 

established to recognize individuals 

who have made outstanding 

contributions in the field of Neural 

Networks. Up to three awards, at most one in each category, 

of $1000 each, are presented annually to senior, highly 

accomplished researchers for outstanding contributions 

made in the field of Neural Networks. 
 

The Hebb, Helmholtz and Gabor Awards: 

The Hebb Award - recognizes achievement in biological 

learning. 

The Helmholtz Award - recognizes achievement in 

sensation/perception. 

The Gabor Award - recognizes achievement in 

engineering/application. 
 

Young Investigator Awards: 

Up to two awards of $500 each are presented annually to 

individuals with no more than five years postdoctoral 

experience and who are under forty years of age, for 

significant contributions in the field of Neural Networks. 
 

Nominations: 

1. The Awards Committee should receive nominations of 

no more than two pages in length, specifying: 

-The award category (Hebb, Helmholtz, Gabor, or Young 

Investigator) for which the candidate is being nominated. 

-The reasons for which the nominee should be considered 

for the award. 

-A list of at least five of the nominee's important and 

published papers. 

2. The curriculum vitae of both the nominee and the 

nominator must be included with the nomination, 

including the name, address, position/title, phone, fax, 

and e-mail address for both the nominee and nominator. 

3. The nominator must be an INNS member in good 

standing. Nominees do not have to be INNS members. If 

an award recipient is not an INNS member, they shall 

receive a free one-year INNS membership. 

4. Nominators may not nominate themselves or their family 

members. 

5. Individuals may not receive the same INNS Award more 

than once 

All nominations will be considered by the Awards 

Committee and selected ones forwarded to the INNS Board 

of Governors, along with the Committee's recommendations 

for award recipients. Voting shall be performed by the 

entire BoG. 

 

 

 

The Awards Committee: 

INNS Award Committee consists of the chair (Prof. Leonid 

Perlovsky) and two other members. All members must be 

INNS Governors in the year that they are appointed. 
 

Please email the 2013 nominations along with their 

attachments directly to the chair of the Awards Committee 

at leonid@seas.harvard.edu, with a copy to the Secretary of 

the Society at jonathan@sit.kmutt.ac.th by June 1, 2012. 

Please use the following subject line in the email: INNS 

award nomination.  
 

You may view this information at www.inns.org. 

 

 
 

INNS News 
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Summer School 
Mon. June 25 - Fri., August 3, 2012 

International Conference on Brain-Mind (ICBM) 
Sat. July 14, 2012 - Sun. July 15, 2012 

Michigan State University, East Lansing, Michigan USA 

http://www.brain-mind-institute.org/  

Collectively, the human race seems ready to unveil one of 

its last mysteries — how its brain-mind works at 

computational depth. The research community needs a large 

number of leaders who have sufficient knowledge in at least 

six disciplines conjunctively — Biology, Neuroscience, 

Psychology, Computer Science, Electrical Engineering, and 

Mathematics (6 disciplines). The Brain-Mind Institute (BMI) 

provides an integrated 6-discipline academic and research 

infrastructure for future leaders of brain-mind research. The 

BMI is a new kind of institute, not limited by boundaries of 

disciplines, organizations, and geographic locations. 

The subjects of interest include, but not limited to: 

Genes: inheritance, evolution, species, environments 

evolution vs. development. 

Cells: cell models, cell learning, cell signaling, tissues, 

morphogenesis, tissue. 

Circuits: features, clustering, self-organization, brain areas, 

classification, regression. 

Streams: pathways, intra-modal attention, vision, audition, 

touch, taste. 

Brain ways: neural networks, brain-mind architecture, 

inter-modal, neural modulation (punishment/serotonin, 

reward/dopamine, novelty/Ach/NE, higher emotion). 

Experiences/learning: training, learning, development, 

interaction, performance metrics. 

Behaviors: actions, concept learning, abstraction, 

languages, decision, reasoning. 

Societies/multi-agent: joint attention, swarm intelligence, 

group intelligence, laws. 

Diseases: depression, ADD/ADHD, drug addiction, 

dyslexia, autism, schizophrenia, Alzheimer's disease, 

Parkinson's disease, vision loss, and hearing loss. 

Applications: image analysis, computer vision, speech 

recognition, pattern recognition, robotics, artificial 

intelligence, instrumentation, and prosthetics. 

Keynote talks include: 

James L. McClelland, Stanford University 

Stephen Grossberg, Boston University 

 

 

 

 

 

INNS-WC2012 
INNS-Winter Conference 2012 
October 3-5, 2012, Bangkok, Thailand 

http://inns.sit.kmutt.ac.th/wc2012/  

The flagship conference of the International Neural 

Network Society (INNS) is the International Joint 

Conference on Neural Networks (IJCNN) that is jointly 

sponsored by INNS and IEEE Computational Intelligence 

Society. IJCNN traditionally features invited plenary talks 

by world-renowned speakers in the areas of neural network 

theory and applications, computational neuroscience, 

robotics, and distributed intelligence. In addition to regular 

technical sessions with oral and poster presentations, the 

conference program will include special sessions, 

competitions, tutorials and workshops on topics of current 

interest. Typically there are well over six hundred delegates 

in this annual event. 

  The board of governors of INNS decided in 2006 to 

establish a series of symposia or winter conferences 

devoted to new developments in neural networks. The first 

of the INNS Symposia Series was held in Auckland, New 

Zealand back on November 24-25, 2008 – 

http://www.aut.ac.nz/nnn08/. The theme was “Modeling the 

brain and the nervous system” and comprised of two 

symposia: 1) Development and Learning; and 2) 

Computational Neurogenetic Modelling. The second in the 

series was the INNS International Education Symposium on 

Neural Networks (INNS-IESNN) held in Lima, Peru on 

January 25-27, 2011 – http://eventos.spc.org.pe/inns-

iesnn/index.html. The third Symposia Series will cover a 

much broader context of “Natural and Machine 

Intelligence”.  

INNS-WC general track: Trends in Natural and Machine 

Intelligence: Neural network theory & models; 

Computational neuroscience; Cognitive models; Brain-

machine interface; Collective intelligence; etc.  

INNS Symposium on Nature Inspired Creativity 

(SoNIC2012): Application of nature inspired computing in 

creative industries; Art and cognition; Generative art; 

Aesthetic evaluation; etc.  

INNS Symposium on Vision and Image Processing 

(SoVIP2012): Low-level image processing; 3D sensing & 

object modeling; Tracking and surveillance; Human motion 

analysis; Robot intelligence; etc.  

INNS Symposium on Data Analytics and Competitions 

(SoDAC2012): Business intelligence; Air quality and 

environmental issues; Social networks and analytics; 

Neuro-informatics; Data competitions; etc. 

 

Call for Papers 

http://www.brain-mind-institute.org/
http://inns.sit.kmutt.ac.th/wc2012/
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IJCNN2013 
International Joint Conference on Neural Networks 
August 4-9, 2013, Dallas, TX, USA 

http://www.ijcnn2013.org/ 

The International Joint Conference on Neural Networks is 

the premier international conference in the area of neural 

networks. IJCNN 2013 is organized by the International 

Neural Network Society (INNS), and sponsored jointly by 

INNS and the IEEE Computational Intelligence Society - 

the two leading professional organizations for researchers 

working in neural networks. 

  IJCNN 2013 will be held at the Fairmont Hotel in Dallas, 

Texas. It will feature invited plenary talks by world-

renowned speakers in the areas of neural network theory 

and applications, computational neuroscience, robotics, and 

distributed intelligence. In addition to regular technical 

sessions with oral and poster presentations, the conference 

program will include special sessions, competitions, 

tutorials and workshops on topics of current interest. 

The beautiful city of Dallas is a hub of the high 

technology world. The Fairmont Hotel provides convenient 

access to all the attractions of Dallas, and is very close to 

several desirable destinations for attendees and their 

families. 

Topics Covered 

· Neural network theory &  · Computational neuroscience 

Models   · Cognitive models 

· Brain-machine interfaces · Embodied robotics 

· Evolving neural systems · Self-monitoring neural  

· Learning neural networks   systems 

· Neurodynamics  · Neuroinformatics 

· Neuroengineering  · Neural hardware 

· Neural network   · Pattern recognition 

applications   · Machine vision 

· Collective intelligence · Hybrid systems 

· Self-aware systems · Data mining 

· Data Streams processing · Sensor networks 

· Agent-based systems · Computational biology 

· Bioinformatics  · Artificial life 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Organizing Committee 

General Co-Chairs: Plamen Angelov and Daniel Levine 

Program Chair: Péter É rdi  

Program Co-Chairs: Marley Vellasco and Emilio del 

Moral Hernandez 

Competitions Chair: Sven Crone 

Tutorials Chair: Leonid Perlovsky 

Special Sessions Chair: Radu-Emil Precup  

Web Reviews Chair: Thomasz Cholewo  

Panels Chair: Juyeng Weng 

Publicity Chair: Bill Howell 

Awards Chair: Arthur Kordon  

Sponsors & Exhibits Chair: Jagannathan Sarangipani 

Publications Chair: Bruno Apolloni 

International Liaison: Carlo Morabito 

European Liaison: Petya Koprinkova 

Webmaster: Dan Alexandru 

Plenary Speakers  

• Klaas Stephan, University of Zurich, Swiss Federal  

Institute of Technology  

• Olaf Sporns, Indiana University  

• Lydia Kavraki, Rice University  

Deadlines  

• Special Session, Tutorial Proposals: December 15, 2012  

• Post-Conference Workshop Proposals: December 15,  

2012  

• Paper Submissions Deadline: February 1, 2013  

• Camera-Ready Paper Submissions: May 1, 2013  

• Early Registration: June 15, 2013 
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