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What we are not covering

Applications outside of direct forecasting of daily stock returns

* Reinforcement Learning
- Interesting papers by e.g. Gordan Ritter (Machine Learning for Trading)
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What we are not covering

Applications outside of direct forecasting of daily stock returns

* LLMs

* Various obvious applications to text processing for feature generation

« Time series? Architectures combining text processing and returns history seem more
interesting
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What we are not covering

Applications outside of direct forecasting of daily stock returns

* Intraday forecasting
» Higher ratio of signal to noise
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Momentum Transformer - a paper to motivate discussion

Trading with the Momentum Transformer:
An Intelligent and Interpretable Architecture

Kieran Wood*, Sven GiegerichT, Stephen Roberts®, Stefan Zohren®
*Oxford-Man Institute of Quantitative Finance, University of Oxford
TOxford Internet Institute, University of Oxford

“We introduce the Momentum Transformer, ... which outperforms benchmark
time-series momentum and mean-reversion trading strategies.”
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Momentum Transformer - Return test / Target / Loss

“The univariate TSMOM strategies we focus on differ from the cross-sectional approach
which studies the comparative performance of assets.”

Fine for CTAs, some hedge funds. Target is elsewhere stated as 1 day forward
Sharpe ratio, backtest portfolios are rebalanced daily.

“We train ... with loss function selected ... for maximising Sharpe ratio”

Nice!
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Momentum Transformer - Main Result
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What is TSMOM?
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Momentum Transformer - Small Details

What is TSMOM? Digging through paper, it is not defined.
We do see these interesting, unrelated, notes:

“We winsorise our data by limiting it to be within 5 times its exponentially weighted
moving (EWM) standard deviations from its EWM average, using a 252-day half-life.”

“We keep the last 10% of the training data, for each asset, as a validation set. We
implement random grid search, as an outer optimisation loop, to select the best
hyperparameters, based on the validation set.”
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Momentum Transformer - TSMOM Benchmark

What is TSMOM? Digging through online code we find:
returns_data["position"] = intermediate momentum position(@, returns_data)
def intermediate_momentum position(w: float, returns_data: pd.DataFrame):

return w * np.sign(returns_data["norm_monthly return"]) + (1 - w) * np.sign(
returns_data["norm_annual_return"]

For review purposes only. Copyright © 2024 Qognitive. All rights reserved.
No ownership or license rights granted. Not to be shared or disclosed or distributed to any third party.



Momentum Transformer - Reconsidering Main Result

“Our input features ... include returns at different timescales ... corresponding to daily,
monthly, quarterly, biannual and annual returns, which are normalised using ex-ante
volatility...

We also use MACD indicators which are a volatility normalised moving average
convergence divergence indicator”

Returns Vol. Sharpe ggrn. Sortino
Average 1995-2020
Long-Only 2.45%  4.95% 051 351% 0.73
TSMOM 4.43% 4.47% 1.03  3.11% 1.51
LSTM 2.71% 1.67% L.70  1.10% 2.66
Transformer 3.14%  2.49% 1.41 1.68% 213
Decoder-Only Trans. 295% 2.61% 1.11 1.74% 1.69
Conv. Transformer 294%  2.75% 107  1.87% 1.60
Informer 2.39% 1.38% .72 0.89% 2.67
Decoder-Only TFT 4.01% 1.54% 254 096% 4.14
Decoder-Only TFT CPD 3.70% 1.37% 262 0.85% 4.25
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QCML & Neural Net - A reference for design and testing

Quantum cognition machine learning:

financial forecasting

A new paradigm for training machine learning algorithms based on quantum cognition is presented

“Here, Ryan Samson, Jeffrey Berger, Luca Candelori, Vahagn Kirakosyan,
Kharen Musaelian and Dario Villani introduce a novel machine learning
approach based on the ideas of quantum cognition, which they call
guantum cognition machine learning (QCML).”
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QCML & Neural Net - Return test

To test performance, we use covariance estimated daily from daily returns® to produce Markowitz
optimal investment portfolios, where portfolio weight w = V~! f given covariance V and forecast
f7. Given that the forecasts have been projected away from input and control features, these
investment portfolios will also have no exposure to input and control features.®

Evaluating cross-sectional returns, after removing the linear effect of input
features, as well as additional control features
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QCML & Neural Net - Projection

5If you wish to solve for portfolio weights which maximize expected returns, with a penalty for expected portfolio
variance, while maintaining zero exposure to a set of controls, then for weights w, forecast f, asset variance V', risk
aversion p, and controls M, you need to solve for w which minimizes —wT f + 0.5pwTVw such that wTM = 0. The
solution is w = V~IRf where R =1 — M(MTV~'M)~1MTV~1, Thus R is a projection operator that projects
away from M, consistent with our desired investment process. Rf is also the residual from an inverse variance
weighted regression of f on M

Our projection is:

« Equivalent to residualization with weighted linear regression
« Consistent with portfolio management process

* Focuses results on non-linear component of these forecasts
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QCML & Neural Net - Target

Our target variable for purposes of model training is 15 day forward log returns, projected?®
away from model input features as well as Beta, Size, and GICS Dummies. After projection,

target returns are cross-sectionally normalized.

Our target is:
* Multi-day, generally results in better learning
* Projected from inputs / controls - focused on the non-linear component

» Cross-sectionally normalized daily
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QCML & Neural Net - Additional Details

To create more robust forecasts, we partition stocks into randomized groups of approximately
50, training individual NN and QCML models over each subset, and average forecasts for each

stock across 100 different such partitions.

For review purposes only. Copyright © 2024 Qognitive. All rights reserved.
No ownership or license rights granted. Not to be shared or disclosed or distributed to any third party.

15



Duality Tests - Importance of multiple seeds

Test:

« 13 Neural Net configurations Duality Group used in production,
configurations differ by input feature set

*  Models trained on full stock universe

« 16 partitions for each model
* Each sub-partition has a different random seed derived from main seed
* Sub-partitions differ by initialization and order training data is applied
 Final forecast is averaged across 16 seeds

* Run 4 different main seeds, look at forecast correlation across
seeds
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QCML & Neural Net - Additional Details

The NN architecture and training approach we use adheres fairly closely to that recommended
in [14], other than our more complex approach to ensembling. Our neural network is implemented
in PyTorch and contains 3 hidden layers of 32, 16 and 8 nodes respectively, with batch normal-
ization [16] applied prior to ReLU activation [18, 23|. We use a simple mean squared error loss
function, and train using stochastic gradient descent and the Adam optimizer.

[14] Shihao Gu, Bryan Kelly, and Dacheng Xiu. Empirical Asset Pricing via Machine Learning,.
The Review of Financial Studies, 33(5):2223-2273, 02 2020.
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QCML & Neural Net - Main Results

Table 5: Sharpe Ratios of returns to equal-risk combined linear forecasts for all features, those linear forecasts
with NN Extended Model forecasts added, those linear forecasts with QCML Extended Model forecasts added,
and all Extended strategies. The QCML forecast provides better diversification than the NN forecast, but the best

Sharpe Ratio is achieved by using both the NN and QCML forecasts.

Period Linear Linear Strategies Linear Strategies All

erio Strategies + NN + QCML Strategies
Sep 2013 - Jun 2024 1.17 1.38 1.43 1.58
Sep 2013 - Apr 2017 2.31 2.57 2.66 2.82
May 2017 - Dec 2020 -0.66 -0.32 -0.26 0.03
Jan 2021 - Jun 2024 1.77 1.81 1.82 1.83

5 Cumulative returns from equal-risk combined linear forecasts for all
features, from the same linear forecasts but with either the NN or QCML
extended-model forecasts added, and from all extended strategies

—— Linear strategies

~——— Linear strategies + NN
—— Linear strategies + QCML
— All strategies

2014 20186 2018 2020 2022 2024

Returns have been scaled by full-sample realised volatility
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Duality Tests - Simple FCL sizing

Average Sharpe ratio across 10 production configuration Neural Networks

Hidden Layer Sizes
Dropout Rate 5 10 20 40 100 55 10,10 20, 20
0 0.43 0.48 0.49 0.47 0.35 - - -
0.1 0.40 0.45 0.50 0.49 0.50 0.42 0.51 0.41
0.25 0.50 0.50 0.50 0.46 0.46 0.18 0.32 0.41
0.4 0.45 0.40 0.43 0.46 0.42 - - -
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Duality Tests - Simple FCL sizing

Average Sharpe ratio across 78 Neural Networks with random feature pairs

Average Sharpe
Hidden Layer Sizes
Dropout Rate 5 10 20
0 -0.11 -0.04 -0.05
0.1 -0.17 -0.17 -0.16
0.25 -0.18 -0.17 -0.15
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Validation Sharpe Ratios

* 1 hidden layer, 10 nodes

¢ Column 1: 1 lag, 2-4: 8 lags
* Dropout by column O /0/0.25/0.50
Mean Results:

Lags 1 8 8 8
Dropout 0% 0% 25% 50%
Mean Sharpe 0.14 0.46 0.44 0.48

Train

Validate |Test

2.70

1.21

1.98
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Aggregate Results (8 lags, no dropout):
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Duality Tests - Prelude to complex architectures
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Duality Tests - Prelude to complex architectures

Take strongest features from prior test / config, run pairs (validation Sharpe below):

012 028 018 020 031 042 082 068 066 051 024 088113 o063
0.12 067 056 053 054 064 065 115 107 090 054 107 133 091
028 067 097 077 078 075 097, 472 131 149 077 127 158 097
018 056 097 071 063 070 073 141 112 114 072 117 140 092
020 053 077 071 053 0S8 062 117 108 103 062 128 141 087
031 0S54 078 063 053 057 060 1312 094 094 065 097 123 076
042 064 075 070 058 057 045 096 086 085 067 099 116 038!
082 065 097 073 062 060 045 101 076 097 0S5 069 092 o048
068 11507472 141 117 112 09 101 12000888 o099 134 156 122
066 107 131 112 108 094 086 076 120 145 098 123 143 105

\ 051 090 149 114 103 094 085 185 145 109 140 162 117
024 0S4 077 072 062 065 067 055 089 098 109 099 123 089
088 107 127 117 128 097 099 069 134 123 140 099 135 104
113 133 154 140 141 123 116 092 156 143 162 123 135 116

063 091 097 092 087 076 08: 048 122 105 117 089 104 116

Aggregate results:

Train Validate |[Test
All 2.47 1.24 1.81
Strong / Weak 2.66 1.34 2.11
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Duality Tests - Prelude to complex architectures

Take strongest features from prior test / config, add all weak features:

Ci.linlmll.llw Returns

Train Validate Test Embargo
|Strong/All Weak 2.82 1.72 2.13 0.71
mr.*\_..._f‘\w..-f
thmw
l‘p\-'l'
F/\m'm 1
L 50 1A .PI'-."- £
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Duality Tests - RNN

Expanded feature set, 10 lags
Simple FCL: 10 Hidden Nodes. Average Sharpe 0.44

i e 130 138 134 123 031 0 0w
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Simple RNN: 5 RNN Nodes, use only final output, aggregate with linear layer.

Average Sharpe 0.47

Additional improvement from residual connection
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Duality Tests - RNN

Additional variations (using all hidden states, varying layers, varying how layers stack,

biases, residual connections etc.). Aggregate Sharpe ratios:

1 Layer, Final State Only, 3 RNN >
Nodes, Add Residual Connection

modules

|#fcl_(10 5 T)
|#mn_L2ph3_(W10_I1_H6_B)
|#mn_L2ph3 (W10 _11_H6 B_RN)
|#mn_L2 NS_(W10 11 H3 B)
|#mn_L2 NS_(W10_I1_H3 B_RN)
|#mn_L2_S_(W10_I11_H3 B)
|#mn_ L2 S (W10 11_H3 B_RN)

#mn L1 NS (W10 11 H3 B)
#4mn L1 NS (W10 11 H3 B _RN)

|#mn_L1_S_(W10_I1_H3 B)
|#mn L1 S (W10 11 H3 B RN)
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1.32
1.55
1.39
1.59
1.44
1.61
1.31
1.64
1.71
1.53
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Duality Tests - RNN, final result

Validation / Test

Later replaced with an even simpler architecture

Q)

Embargo
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Minor Marginal Impact on Backtest
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Duality Tests - Final Comments

Also experimented with CNN, LSTM, Attention, none of which “made the cut”
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Duality Tests - Final Comments

We were a small team - we didn’t try everything, or everything perfectly.

For example, in Momentum Transformer paper, huge variation in performance across
exact architecture (though unclear if multiple seeds were used to reduce noise)

Returns Vol. Sharpe gz:n. Sortino
Average 1995-2020
Long-Only 245%  495% 0.51 3.51% 0.73
TSMOM 4.43% 447% 1.03  3.11% 1.51
LSTM 2.71% 1.67% L7000 1.10% 2.66
Transformer 3.14% 2.49% 1.41 1.68% 213
Decoder-Only Trans. 295%  261% 1.11 1.74% 1.69
Conv. Transformer 294%  2.75% 1.07 1.87% 1.60
Informer 2.39% 1.38% 1.72  0.89% 2.67
Decoder-Only TFT 4.01% 1.54% 254  0.96% 4.14
Decoder-Only TFT CPD 3.70% 1.37% 262 0.85% 4.25
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Duality Tests - Final Comments

When evaluating an architecture, accurately define the benchmark
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Thank you!
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